
AUVSI TECHNICAL REPORT, July 2015 
University of Southern California Autonomous Underwater Vehicle

Design Team

SeaBee IV  
Written By: Michael Kukar, Jessica Freidin, and Ben Shiroma

Seabee IV is an autonomous underwater vehicle (AUV) developed by a team of
students at the University of Southern California for the International Robosub

Competition.

1.0 INTRODUCTION

The University of Southern California’s Autonomous Underwater Vehicle Team (USC AUV) is
dedicated to participating in and furthering robotics research not only at USC, but also around the
world. USC AUV is a consistent participant in the Robosub Competition and strives to continually
improve through exchange of ideas and involvement in the AUV community. USC AUV uses a full-
year design cycle between iterations of the SeaBee AUV, allowing time for thorough testing and
integration of new designs. From preliminary internal design reviews to a critical review attended by
experts in the field, designs and changes to SeaBee undergo a thorough analysis culminating in vital
improvements to the AUV without wasteful or unnecessary expense. This year USC AUV has
undergone a complete rebuild of Seabee’s internals and pod design, keeping only the frame and
original hull from last year.

2.0 MECHANICAL

2.1 MECHANICAL OVERVIEW

The mechanical design philosophy for Seabee is intended to create a modular, compact, and
lightweight AUV. The single-hull design with an internal rack system enables easy removal and
centralized access to electronics while the external frame provides support for long term
development by allowing individual component redesigns with little to no effect on the overall
structure of the AUV. Electrical connections are established by using waterproof connectors,
supplied from Fischer Connectors, from the hull end cap to external components such as the IMU,
SONAR, marker dropper, shooter, cameras, and thrusters allowing simplified electrical
reconfiguration. Similar wet-pluggable connectors are also in place to allow devices to be plugged
into SeaBee without worrying about water creating a short, saving time during wet tests and
competition runs.

���
2.2 HULL

The hull for SeaBee is constructed out of 3/16” thick T6061 anodized aluminum. The enclosure
employs a cylindrical design measuring 7.5” in diameter and 13” in length. It shields the internal
electrical systems from water damage with a watertight design. In the hull cap design, the cap is
covered with waterproof Fischer Connectors allowing access to the electrical systems from
components outside of the hull.

2.3 EXTERNAL FRAME

The new external frame is part of the design for the next iteration of the SeaBee AUV and consists
of an octagonal cage surrounding the main hull. Each Octagon measures 10.836” around an
inscribed circle. Four Octagons create three sections of the frame. Panels constructed of T6061
anodized aluminum measuring 7” x 4.5” x 3/16” make up the walls of the octagonal cage resulting
in a total of twenty-four panels. Each panel is associated with a certain location of the frame and a
component. In addition, panels can move around the frame easily if design changes are necessary.
The front and back surfaces of the octagonal cage serve as mounts for the depth thrusters and the
flotation structure.

These panels are designed around a common panel template in SolidWorks and can be quickly
machined through a laser-cutting process and then anodized. The panel redesigns dramatically
reduce the design and manufacturing time of any mechanical changes to the SeaBee AUV or it
components and are compatible with either the Seabee or upcoming SeaBee IV designs.

���

���
The flotation is also built into the external frame. Due to the higher density of aluminum, flotation
is a necessary addition to the sub. Four 3” diameter acrylic air canisters are placed at the corners of
the AUV. Mounted alongside them are smaller acrylic tubes that can be loaded with weights. The

weight tubes can be manually adjusted to achieve neutral buoyancy. With the mounted flotation
system, SeaBee occupies a space of 28” x 26” x 20”.

2.4 INTERNAL FRAME

SeaBee utilizes a custom designed internal frame attached to the main hull end cap, which can slide
in and out of the hull on Teflon rails. This frame is machined from aluminum and is designed
around the central electronics, including the carrier board, power board, and batteries ensuring a
secure mounting platform for every device that is installed in SeaBee. 3D CAD drawings are used to
guarantee that the electrical boards are compatible with the Internal Frame. The frame maximizes
and efficiently uses space within the hull and provides a cooling infrastructure for the main
computer.

2.5 LIQUID COOLING

SeaBee’s quad core processor and other highly thermally demanding elements necessitate a cooling
system to prevent damage to the electronics. SeaBee takes advantage of a unique liquid-cooling
system consisting of custom aluminum cooling block, an external radiator and a circulation pump.
The cooling block is mounted to the standard XTX heat-spreader to cool the CPU while
simultaneously pulling heat away from the motor-driver H-bridges. The radiator is an off the shelf
120mm radiator used in PC liquid cooling applications. Using the lower temperature of the water as
a cooling source, SeaBee is able to passively cool the radiator in the surrounding environment.

2.6 MOTORS/THRUSTERS

SeaBee uses six BlueRobotics T100 thrusters arranged in three main groups: horizontal for forwards
and backwards movement, vertical for depth, and strafing to enable five degrees of control.

2.7 MARKER DROPPER

The marker dropper mechanism is constructed using linear actuators. This design features a
compact frame and a robust releasing structure that is quick, accurate, and reliable. The dropper is
connected to the internal electronics using a 4-pin connector on the end cap. When the control
signals activate the relays, the two solenoids on the marker dropper release a marker, which is held in
place with two spring-loaded arms. The markers are shaped like mini-torpedoes with angled fin tails
to induce a spin during the descent. This shape ensures a highly hydrodynamic marker that will fall
in a more streamlined way than that of a spherical marker.

2.7 GRABBER

The grabber mechanism is the component of the SeaBee that is used to pick up the object in the
recovery phase. SeaBee’s grabber is an attachment on the bottom made of aluminum (See Figure).
It is lined with several small acrylic teeth that push the PVC briefcase into one of the slots. This
revision of the grabber incorporates a retractable design. The grabber is able to slide within the
constraints of the robot when it is not in the pool to maintain SeaBee's compact design. When the
SeaBee AUV is positioned above the object, the slots open allowing the PVC pipe to fall into place.
The slot levers are controlled by small torsion springs that close the slots after the object is acquired.

2.8 BATTERY PODS

Two aluminum battery enclosures are mounted to the underside of the vehicle’s frame. This frees up
space for the electrical systems inside the primary hull. Battery pods can be hot swapped, allowing
for extended runtime. The battery enclosures feature a rectangular design in order to compactly fit
the rectangular batteries. They are sealed via an O-ring in a face-seal configuration. They are also
fitted with pressure relief valves as a safety measure to prevent the buildup of hazardous pressure
levels.

3. ELECTRICAL

OVERVIEW

The Seabee electrical system provides the robot and its systems with power and provides the
appropriate interface between all of the electrical devices. The main electrical system is made up of
two backplanes, and three daughter cards each featuring its own Atmel 1280 microprocessor. This
eliminates the need for excessive wires inside the submersible hull, giving the final product a cleaner
look, and increasing the overall reliability by alleviating the risk of loose wires and poor connections

3.1 POWER DISTRIBUTION

The Seabee Power Board is developed as a versatile platform on which to develop a wide array of
electrical systems. In addition to supporting the vehicle's power management and regulation needs,
the Power Board serves as an interface for any sensors not capable of directly interfacing with the
XTX Carrier Board.

At the heart of the power board is the Parallax Propeller P8X32A microcontroller. The P8X32A has
eight 32-bit processors, making it well-suited to the robot's high-precision, low- latency
requirements. Nicknamed BeeSTEM, the microcontroller is responsible for maintaining
communication with these sensors. As the BeeSTEM receives data from the sensor suite, it updates
its control loops and forwards the data to the XTX Carrier Board. The BeeSTEM also produces the
appropriate commands to initialize the sensors and place them in desired operating modes.

The Power Board produces regulated power at the common voltages of +3.3V, +5V, and +12V. To
ease the process of swapping or adding sensors, the Power Board has auxiliary connectors. The
Power Board incorporates nine motor drivers, which are controlled by BeeSTEM. Six of these
provide power to the thrusters, and the other three support additional actuators, such as the Marker
Dropper or Torpedo Launcher.

3.2 COMPUTING

Computer design for the Seabee is governed by the vehicle's need to perform complex computer
vision and machine learning algorithms in real time in spite of restrictive space requirements. An
XTX computer-on-module (COM) was selected for its balance between size and performance. The
Seabee XTX Carrier Board was designed to break out important signals such as power, USB, VGA,
and Ethernet, SATA, and USART.

3.3 SENSORS

The Seabee sensor suite was designed to provide as close to a 6-DOF state-space solution as is
possible within team budget. The Seabee is capable of actively monitoring the status of its own

systems through the use of internal temperature sensors, internal pressure transducers, current
monitoring in each motor driver channel (nine total), and coulomb counting in each battery pod.
Four high-performance Internet-Protocol (IP) cameras equipped with wide-angle lenses are used to
complete specific vision-related tasks and to provide an additional position estimate via visual
odometry.

For the aforementioned 6-DOF localization the Seabee incorporates a Xsens MTi Attitude and
Hearing Reference System (AHRS), a Honeywell HMC6343 3-axis compass, and a pressure
transducer used to calculate depth. The primary advantage of using an AHRS like the MTi over a
traditional inertial measurement unit (IMU) comes in the form of the unit's on-board signal
processor, which allows it to be calibrated for the electromagnetic fields present on the Seabee and
thus achieve virtually no drift.

Some of the sensors on the Seabee such as the IP cameras, are capable of directly interfacing with
the XTI carrier board via USB. Most of the sensors on the robot, however, utilize serial protocols
such as RS232, I2C, and SPI. The BeeSTEM is responsible for meeting these bus requirements.

3.4 BATTERIES

The Seabee battery system consists of two custom +22.2V lithium polymer battery packs in parallel
for a total of 20,000 mAh. Each pack contains a Seabee Battery Board based on the ATMEGA 406
microcontroller. In addition to regulating the LiPo cells to ensure even discharge, the Battery Boards
actively monitor state of charge (SOC) through use of current integration, or “coulomb counting”.
Each Battery Board incorporates an LED display to provide visual feedback to the operator.

3.5 KILLSWITCH

The killswitch was designed with reliability as the primary focus. The design is robust and minimal,
functional in the most demanding situations. A single reed switch is mounted inside the primary hull,
actuated by a magnet tethered to the outer hull. A tiny logic-gate- based circuit ascertains the state
of the reed switch and produces a 5V TTY “kill” signal to the microcontroller on the power board.
The microcontroller is then responsible for placing the motor and actuator drivers into a low-power
state. 
One can place a high degree of confidence in the killswitch as its implementation, which takes place
at the lowest level possible short of physically disconnecting the batteries, ensures that it will
function properly even if other systems on the sub malfunction. Additionally, the robot's software
monitors the state of the killswitch via the power board microcontroller. This means that if the
robot enters the “kill state”, processing can be halted until the state is exited and then proceed as
normal, a helpful tool during development.

3.6 PASSIVE SONAR ARRAY

A passive sonar system is essential to completion of the recovery task, and can provide an estimate
of relative location to be incorporated into the SLAM implementation. F Four Reson TC4013
hydrophones are placed in a tetrahedral configuration in a pressure case attached to the primary
mechanical frame. The hydrophones are spaced to allow for non- ambiguous determination of
phase difference between incoming waves in the 20-30 kHz range. Using a plane-wave
approximation, a high-confidence estimation of the relative

location of the pinger in three-dimensional space is obtained. 
or the sake of minimizing complexity and integration time, a largely DSP-oriented approach was
chosen. The Electrical Team's role in the sonar system, then, is to ensure that the hydrophone signal
makes its way to the computer with minimal loss. Due to size limitations, placing a full ADC
solution in the same pressure case as the hydrophones is not possible. Instead, a single-channel
preamplifier stage is connected to the immediate output of each hydrophone, inside the pressure
case, and the ADCs is placed inside the main hull. Because of the small distance between the
hydrophones and preamplifiers, very little noise is amplified. Since any noise picked up between the
preamplifiers and the ADCs will have a significantly lower amplitude than the hydrophone signal,
filtering is trivial. The ADCs interface with the on-board computer using Cheetah SPI Host
Adapters. Each ADC- Cheetah pair (one per hydrophone) can achieve a sampling rate of 40 MHz.
As such, the data that reaches the software portion of the sonar solution is as close to the “pure”
signal as possible.

3.7 ACTUATION

The actuation daughtercard features twelve H-bridge motor controllers with PWM. Six controllers
directly drive the robot’s thrusters, and are able to run them forwards and backwards, as well as to
throttle them effectively via a PWM signal. The other six controllers can be used for manipulators
on the robot, including the dropper and torpedo firing system. The current draw of each motor
controller is monitored by a current sense resistor, providing the computer with vital information as
to the power being drawn by any motor. The computer is also able to shut off any or all of the
motors in the event of a malfunction. The vehicle employs six SeaBotix BTD-150 thrusters. They
are positioned to allow for control over all six degrees of freedom.

4 SOFTWARE

4.1 UBUNTU

Seabee3 uses Ubuntu Linux 10.10 “Maverick Meerkat” as its operating system. This selection was
made based on the open-source nature of Ubuntu, its portability, and its good support for our
intended software architecture.

4.2 ROS

Seabee has used ROS, an open-source toolkit developed by Willow Garage, since the 2010 RoboSub
competition. ROS, or the “Robot Operating System”, provides a language-generic, modular
paradigm for the development of software systems.

System components are discretised into units called “nodes”, each of which has at least one
dedicated thread and the ability to control parts of its life cycle.

When necessary, these nodes are able to communicate via explicitly defined, language- generic
messages sent over a named, simplex channel, or “topic”. The direction of these topics is
determined at compile time; a node can “advertise” an outgoing topic via a “publisher” object or
“subscribe” to an incoming topic via a “subscriber” object. However, topics can be redirected or
“remapped” at runtime, allowing for the creation of more loosely-defined distributed systems.

Arbitrary levels of complexity can be achieved through the creation of multiple publishers and
subscribers within a node. More complex paradigms, such as “actions” or “preemptable tasks”, have
been implemented to take advantage of this fact.

At a low level, inter-node communication is accomplished by message serialization within publisher
objects, transmission of serialized data, and message deserialization within subscriber objects.
However, if two nodes can be run on the same machine, and furthermore within the same process,
this communication can instead be performed without serialization via shared pointers, thus
allowing for high-performance, low-overhead communication.[ROS]

Perhaps more importantly, ROS provides fairly generic implementations of many common
algorithms known to the field of robotics, including such categories as sensing, navigation, planning,
and visualization.

4.3 QUICKDEV

While ROS provides a solid foundation on which to build, working within the toolkit often involves
creating unnecessary redundancies across implementations. Furthermore, the serialization-free
communication described above is traditionally time consuming to set up, as modules utilizing it
must follow the “nodelet” paradigm rather than the more common “node” paradigm. We solve this
issue by maintaining a set of scripts and generic wrappers around the more commonly-used ROS
components in an open-source package called “quickdev” available in USC's “usc-ros-pkg”.

4.4 VISION PIPELINE

���
Seabee's view of the competition pool

In its current state, Seabee views the world through two PointGrey Firefly USB cameras: one facing
forward and one facing downward. Both cameras are configured to stream bayered 320x240 images

at 30 hz. While the hardware interface to these cameras is USB, they support the IIDC 1394-based
Digital Camera Specification over USB, allowing for the use of “firewire” camera drivers.
Conveniently, ROS provides an acceptable firewire camera driver node, which we use to read images
from our cameras. Figure 1 shows an example of some of the competition objects as seen by
SeaBee's cameras.

Images streamed from our cameras are bayered and distorted by various optical effects, including
those from the camera lenses and the results of different physical mediums surrounding the sensor
tubes containing the cameras. To compensate for these effects, we use another useful community-
developed ROS node called “image_proc”, which utilizes several common OpenCV functions to de-
bayer and un-distort (given a camera calibration) the incoming raw images.

Following basic low-level image filtering, we perform a color-space conversion from BGR to HSL.
In order to optimize our the vision algorithms farther down the pipeline, we seek to mimic neural
adaptation and avoid unnecessarily processing pixels that are not changing by a sufficient amount.
This value is determined by calculating a weighted sum of the differences between each pixel in each
channel in the current image and the value of that pixel at the point in time that it was last
determined to have changed. Pixels found to have changed by a minimum amount are recorded in a
binary mask, which is published along with the

corresponding HSL image. We call this mask-image pair an “adaptation image.” Figure 2 shows an
adaptation image fed to the color classifier, reducing the number of pixels fed through the
classification algorithm by over 90%. The bands seen in the middle image (probability image) are the
result of pixels that have not yet changed enough to necessitate re-classification.

Newly-generated adaptation images are fed through a color classification node which utilizes a native
Bayes classifier trained on actual camera footage. The classifier identifies newly- changing pixels,
calculates the likelihood that a given pixel should be classified under each of a set of colors, and
then publishes these probabilities as an array of images, with each image representing the
classification for the corresponding color. Subsequent color-sensitive feature extraction algorithms
in the pipeline can utilize these probability images in their calculations. Figure 3 shows an example
of a probability image for the orange color produced by the color classifier next to the input image
as well as the image on which the orange color model was trained.

4.6 RECOGNITION PIPELINE

Recognition and subsequent localization relative to landmarks, or unique competition objects, is
critical to success in the RoboSub competition when the robotic platform used is not aided by a
Doppler Velocity Logger; however, these landmarks are subject to change each year. From a
software standpoint, it is desirable to interact with a generic landmark recognition interface rather
than directly calling upon multiple specialized interfaces. In order accomplish this, Seabee utilizes an
extensible landmark recognizer that accepts a landmark filter and calls on child modules to perform
specialized landmark recognition. This ensures that, with the exception of drastic changes to the
competition, landmark-dependent algorithms can remain mostly unchanged, while specialized
recognition algorithms can be easily developed, tested, and deployed through a standard, familiar
interface.

Where possible, it is desirable to be able to recognize landmarks via an adaptive, generic system,
thereby avoiding as much specialization-related overhead as possible. SeaBee accomplishes this by
calling on a scale- and rotation-invariant feature recognition system which utilizes OpenCV 2D

feature extraction, or contour extraction, performed on color- classified images produced by the
vision pipeline. A set of template contour features, in the form of normalized, rotation-aligned
histograms, is trained for any landmarks or landmark components and passed along with any
candidate contour features located within incoming images to a generic recognition algorithm, which
calculates and returns match qualities for each template-candidate pair. In this way, specialized
landmark recognition algorithms can offload a significant amount of specialization to a central,
generic system, yet still ensure the use of alternate, arbitrarily specialized recognition methods.

In its current state, SeaBee uses a specialized recognition algorithm for each unique landmark,
excepting landmarks differing only in color. Furthermore, recognition is specialized based on the
expected sensor source of landmarks relative to the sub; for example, we assume that pipelines and
bins will only enter the field of view of the downward-facing camera, while buoys, hedges, and
windows are expected to be found only in the field of view of the forward-facing camera. Given
this assumption, we only search for the former set of landmarks in the images streamed from the
corresponding source, and so on.

We assume that certain landmarks are only located within certain parts of the competition pool, and
we further assume that given an arbitrary set of goals, only some subset of these landmarks need to
be recognized. Given these assumptions, we conclude that it is possible to search for only some
subset of landmarks dependent on our current location and/or goal. Therefore, it is desirable to
utilize some simple means of applying a landmark filter, with either narrowing or widening
constraints, through our recognition algorithms, in order to improve performance. We accomplish
this via a custom color- and shape-based filtering API that accepts a list of filter items, each
specifying either a narrowing or widening constraint to be applied to the color or type of a
landmark. For example, when we are attempting to locate a buoy, we look for orange pipelines and
buoys of any color on approach, then look for buoys of a single color on each buoy-touching
attempt, then look for only orange pipelines and yellow hedges as we attempt to locate the first
hedge, etc.

4.7 SENSING AND LOCALIZATION

Currently, our most advanced sensor is an XSens MTi IMU. This inertial measurement unit provides
us with “drift-free” 3D heading and acceleration data calculated by an on-board EKF fed by the
device's accelerometers, gyroscopes, and magnetometers in realtime at 100 Hz. Our team used this
device effectively at the 2011 RoboSub competition to maintain a surprisingly accurate heading while
navigating un-assisted within the competition pool. This year, we plan to expand our use of this
device to pitch and roll stabilization, both of which proved to be significant issues for SeaBee while
moving at high speeds during last year's competition.

SeaBee's hull is also fitted with an external pressure sensor, which is used to estimate the absolute
depth of the AUV below the surface of the water via an experimentally-derived conversion from
arbitrary pressure units to a distance in meters. With our current electronics, this measurement is
taken at about 10 Hz.

Many other teams utilize a Doppler velocity logger (DVL), a very precise sonar device which can
provide the linear components of velocity and pose of the sensor with respect to its environment.
This sensor is currently out of our price range, so we must rely on alternate,

often noisy sources of odometry. Furthermore, both the sensor and thruster configuration of our
platform is almost always subject to change; depending on the progress of the electrical and

mechanical teams, we may or may not have at our disposal a variety of sensors, each with varying
capabilities in terms of both functionality and measurement noise. For this reason, we have found it
necessary to develop both a generic realtime simulation of our vehicle's dynamics, as well as a
generic Bayesian measurement fusion system capable of combining all components of all
observables, whether simulated or actual, into corresponding “filtered” measurements.

Given our current sensing capabilities, the linear components of pose and velocity (those that would
be trivially provided by a DVL) are the most difficult for us to obtain. In order to compensate, we
run a realtime simulation of the sub's dynamics using a software library called BulletPhysics. Given
our vehicle's mass, per-axis linear drag coefficients, the current thruster configuration (per-thruster
capabilities and relative pose), and the motors value being set on each thruster, we are able to
calculate all components of pose and velocity with moderate accuracy. We then fuse this output and
any other odometry measurements together on a per-axis basis into a complete odometry estimate.

When combined, our filtering and simulation modules allow for maximum functionality and
modularity within the constantly changing constraints of our platform; as sensors are added and
removed, the accuracy of the corresponding measurements will vary accordingly. For example, if we
were to integrate a DVL into our platform, we would expect to see the accuracy of the linear
components of our odometry increase significantly. As an added bonus, these systems also allow for
the advanced testing of other software modules via arbitrary levels of simulation of sensor values
and other information, in circumstances when a desirable real-world testing environment is not
practical or is entirely unavailable, or when the effects of a theoretical change to the system need to
be studied.

4.8 NAVIGATION PIPELINE

As with most of our software, we sought to build our navigation system out of modules with
varying levels of specialization, connected by generic interfaces. At a high level, our current
implementation accepts a series of navigation constraints in the form of “waypoints,” generates a
trajectory with an arbitrarily high “temporal resolution”, and then attempts to follow the trajectory
within an additional set of constraints. This functionality is distributed over several modules
including a trajectory planner, a high-level trajectory follower, a low- level velocity-based controller,
and a platform-specific serial interface. Any module wanting to accomplish trajectory-based control
of our vehicle must provide a trajectory to be followed. Within our system, a trajectory is composed
of discrete intervals, each containing a constant acceleration over that interval and the desired state
of the vehicle at the beginning of that interval, in the form of a waypoint (pose and velocity). Low-
level velocity-based control is also possible; indeed, it is utilized by our trajectory following module,
which is discussed in a later section.

A trajectory-planning paradigm was developed to simplify the creation of these trajectories while
following waypoint-based constraints. In general, a trajectory planner accepts a list of two or more
waypoints to be traversed in order, including the initial state of the vehicle, any intermediate states,
and the final state of the vehicle, and returns a trajectory that meets the given constraints as closely
as possible. The trajectory planner also accepts a temporal resolution parameter, which determines
the maximum length of intervals over changing accelerations, as well as constraints on the maximum
velocity and acceleration of the resulting trajectory (used to specialize the trajectory for the
capabilities of a given platform). We currently use a linear trajectory planner, which iteratively
generates a trajectory between each waypoint, ignoring intermediate velocities for simplicity. Starting
with the initial vehicle state, the planner attempts to accelerate at the maximum given acceleration,
up to the maximum given velocity, and generates a new trajectory interval for each change in

acceleration, following a simple set of rules: if the error in position to the current waypoint is below
some threshold, the planner returns an empty trajectory; otherwise, if the error in position is below
some threshold, the planner attempts to strafe to the desired position, then attempts to face the
desired heading; otherwise, if the error in position is above some threshold, the planner attempts to
rotate the vehicle to face the location of the desired waypoint, then attempts to translate the vehicle
to the desired position along its forward axis, and finally attempts to face the desired heading. After
the final waypoint is reached, the planner returns the complete trajectory.

After a trajectory is generated by a trajectory planner, it is passed on to a trajectory follower for
realization. In this case, the trajectory follower is generic due to our generic trajectory design;
regardless of the implementation of the planner that generated the trajectory, the trajectory follower
can utilize the same algorithm to traverse the given trajectory. Along with a trajectory, this module
also accepts constraints related to the accuracy of the realization of the given trajectory, including
the maximum deviation from the trajectory, both in pose and time, as well as the planner to use, if
any, to attempt to recover in the event that the given constraints are not able to be met. If this
failure occurs, the trajectory follower notifies the module that initiated the current goal, then
attempts to re-plan from the vehicle's current pose to the beginning of the given trajectory, if a
recovery planner was specified. In this way, the trajectory follower can be passed a trajectory that
does not necessarily start at the vehicle's current state, and it will automatically prepend a path that
brings the vehicle to the beginning of the original trajectory, if possible. For a given interval in the
trajectory, the follower interpolates between the starting velocity and the calculated ending velocity
according to the acceleration specified by the interval, for the duration specified by the interval,
publishing a desired velocity at each step; this interpolation occurs at a user- specified rate, and can
therefore be specialized for a given platform. Realization of a trajectory, then, is as simple as
iterating over all intervals in the trajectory, interpolating, and performing any recovery applicable
recovery behaviors.

The output format of the trajectory follower (velocities) was selected to ensure generic means of
controlling a given platform. However, generic conversion from desired velocity to platform-specific
motor values was not handled, though it is likely feasible. Instead, we opted for a PID-based
controller over error between current and desired position; specifically, for each movement axis, we
employ both an independent PID controller and a specialized conversion function. In the current
implementation, these axes include all individual linear and angular axes. However, we only seek to
stabilize pitch and roll, while we seek to both stabilize and manipulate all other axes. That is, we
actively attempt to keep the actual value for each axis near the desired value for each axis, but we do
not allow the desired value of pitch and roll to vary from zero. Therefore, in high-level code, we
assume that the pitch and roll of the vehicle are near zero. In the future, we may lift this constraint
on pitch in order to assist in diving; the current implementation was chosen in order to simplify the
vehicle's behavior.

The final actuation is handled by a custom serial driver written specifically for our vehicle's current
hardware implementation. This driver is able to read sensor values, including internal pressure,
external pressure, and kill switch state, as well as set the voltage of all motor drivers on the vehicle's
power board.

In order reduce the significant overhead required to interact with the vehicle's complex control
systems, we have implemented a set of motion primitives that allow the vehicle to be commanded
through a short list of simple yet powerful functions. These functions will automatically invoke the
functionality of the appropriate navigation components mentioned earlier, and include the ability to
move to the position and/or orientation encoded in a pose, align to a position, orbit a given

position, and activate the torpedo launchers and marker droppers. Furthermore, the pose of a
named object (whether static or dynamic), such as a buoy or any other landmark, can be trivially
looked up and passed to these functions, enabling the creation of short, easily-readable high-level
navigation code.

4.9 COMPETITION AI

The final, highest-level controller in our software architecture is our competition AI. This
component is responsible for directing our vehicle to perform the most effective possible action at
any given time, given all known goals and constraints. It is also responsible for enabling/disabling
lower-level, situational modules and filters, such as those related to movement, object recognition,
and behavior production. We fulfill these complex requirements by discretizing all actions into
subtasks, each containing any actions to perform as well as the cost (in terms of distance and
estimated completion time) and reward (in terms of points earned) associated with the task. We then
build a task tree of arbitrary height, thereby allowing for an arbitrary level of task specificity, and
feed this structure into a custom hierarchical cost-based decision algorithm, which attempts to
maximize the overall reward earned in the allotted time. Any distance-based costs are converted into
estimated completion time using the vehicle's current pose and any distance that would be
accumulated while traversing the tree down to that task.

ACKNOWLEDGEMENT

Support from The University of Southern California, iLab, the USC Dornsife College of Letters,
Arts, and Sciences Machine Shop, and the Viterbi School of Engineering allows USC AUV to
continue to be an integral part of student research at the USC Viterbi School of Engineering.

Thank you to our industry sponsors: the Boeing Company, Northrop Grumman, Digi-Key
Corporation, Lockheed Martin, and ADL Embedded Solutions.

REFERENCES

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an
open-source Robot Operating System,” in International Conference on Robotics and Automation,
ser. Open-Source Software workshop, 2009.

