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Seabee IV is an autonomous underwater vehicle (AUV) developed by a team of  
students at the University of  Southern California for the International Robosub 

Competition. 

1.0 INTRODUCTION 

The University of  Southern California’s Autonomous Underwater Vehicle Team (USC AUV) is 
dedicated to participating in and furthering robotics research not only at USC, but also around the 
world. USC AUV is a consistent participant in the Robosub Competition and strives to continually 
improve through exchange of  ideas and involvement in the AUV community. USC AUV uses a full-
year design cycle between iterations of  the SeaBee AUV, allowing time for thorough testing and 
integration of  new designs. From preliminary internal design reviews to a critical review attended by 
experts in the field, designs and changes to SeaBee undergo a thorough analysis culminating in vital 
improvements to the AUV without wasteful or unnecessary expense. This year USC AUV has 
undergone a complete rebuild of  Seabee’s internals and pod design, keeping only the frame and 
original hull from last year. 

2.0 MECHANICAL 

2.1 MECHANICAL OVERVIEW 

The mechanical design philosophy for Seabee is intended to create a modular, compact, and 
lightweight AUV. The single-hull design with an internal rack system enables easy removal and 
centralized access to electronics while the external frame provides support for long term 
development by allowing individual component redesigns with little to no effect on the overall 
structure of  the AUV. Electrical connections are established by using waterproof  connectors, 
supplied from Fischer Connectors, from the hull end cap to external components such as the IMU, 
SONAR, marker dropper, shooter, cameras, and thrusters allowing simplified electrical 
reconfiguration. Similar wet-pluggable connectors are also in place to allow devices to be plugged 
into SeaBee without worrying about water creating a short, saving time during wet tests and 
competition runs. 
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2.2 HULL 

The hull for SeaBee is constructed out of  3/16” thick T6061 anodized aluminum. The enclosure 
employs a cylindrical design measuring 7.5” in diameter and 13” in length. It shields the internal 
electrical systems from water damage with a watertight design. In the hull cap design, the cap is 
covered with waterproof  Fischer Connectors allowing access to the electrical systems from 
components outside of  the hull. 

2.3 EXTERNAL FRAME 

The new external frame is part of  the design for the next iteration of  the SeaBee AUV and consists 
of  an octagonal cage surrounding the main hull. Each Octagon measures 10.836” around an 
inscribed circle. Four Octagons create three sections of  the frame. Panels constructed of  T6061 
anodized aluminum measuring 7” x 4.5” x 3/16” make up the walls of  the octagonal cage resulting 
in a total of  twenty-four panels. Each panel is associated with a certain location of  the frame and a 
component. In addition, panels can move around the frame easily if  design changes are necessary. 
The front and back surfaces of  the octagonal cage serve as mounts for the depth thrusters and the 
flotation structure. 

These panels are designed around a common panel template in SolidWorks and can be quickly 
machined through a laser-cutting process and then anodized. The panel redesigns dramatically 
reduce the design and manufacturing time of  any mechanical changes to the SeaBee AUV or it 
components and are compatible with either the Seabee or upcoming SeaBee IV designs. 
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The flotation is also built into the external frame. Due to the higher density of  aluminum, flotation 
is a necessary addition to the sub. Four 3” diameter acrylic air canisters are placed at the corners of  
the AUV. Mounted alongside them are smaller acrylic tubes that can be loaded with weights. The 



weight tubes can be manually adjusted to achieve neutral buoyancy. With the mounted flotation 
system, SeaBee occupies a space of  28” x 26” x 20”. 

2.4 INTERNAL FRAME 

SeaBee utilizes a custom designed internal frame attached to the main hull end cap, which can slide 
in and out of  the hull on Teflon rails. This frame is machined from aluminum and is designed 
around the central electronics, including the carrier board, power board, and batteries ensuring a 
secure mounting platform for every device that is installed in SeaBee. 3D CAD drawings are used to 
guarantee that the electrical boards are compatible with the Internal Frame. The frame maximizes 
and efficiently uses space within the hull and provides a cooling infrastructure for the main 
computer. 

2.5 LIQUID COOLING 

SeaBee’s quad core processor and other highly thermally demanding elements necessitate a cooling 
system to prevent damage to the electronics. SeaBee takes advantage of  a unique liquid-cooling 
system consisting of  custom aluminum cooling block, an external radiator and a circulation pump. 
The cooling block is mounted to the standard XTX heat-spreader to cool the CPU while 
simultaneously pulling heat away from the motor-driver H-bridges. The radiator is an off  the shelf  
120mm radiator used in PC liquid cooling applications. Using the lower temperature of  the water as 
a cooling source, SeaBee is able to passively cool the radiator in the surrounding environment. 

2.6 MOTORS/THRUSTERS 

SeaBee uses six BlueRobotics T100 thrusters arranged in three main groups: horizontal for forwards 
and backwards movement, vertical for depth, and strafing to enable five degrees of  control. 

2.7 MARKER DROPPER 

The marker dropper mechanism is constructed using linear actuators. This design features a 
compact frame and a robust releasing structure that is quick, accurate, and reliable. The dropper is 
connected to the internal electronics using a 4-pin connector on the end cap. When the control 
signals activate the relays, the two solenoids on the marker dropper release a marker, which is held in 
place with two spring-loaded arms. The markers are shaped like mini-torpedoes with angled fin tails 
to induce a spin during the descent. This shape ensures a highly hydrodynamic marker that will fall 
in a more streamlined way than that of  a spherical marker. 

2.7 GRABBER 

The grabber mechanism is the component of  the SeaBee that is used to pick up the object in the 
recovery phase. SeaBee’s grabber is an attachment on the bottom made of  aluminum (See Figure ). 
It is lined with several small acrylic teeth that push the PVC briefcase into one of  the slots. This 
revision of  the grabber incorporates a retractable design. The grabber is able to slide within the 
constraints of  the robot when it is not in the pool to maintain SeaBee's compact design. When the 
SeaBee AUV is positioned above the object, the slots open allowing the PVC pipe to fall into place. 
The slot levers are controlled by small torsion springs that close the slots after the object is acquired. 

2.8 BATTERY PODS 



Two aluminum battery enclosures are mounted to the underside of  the vehicle’s frame. This frees up 
space for the electrical systems inside the primary hull. Battery pods can be hot swapped, allowing 
for extended runtime. The battery enclosures feature a rectangular design in order to compactly fit 
the rectangular batteries. They are sealed via an O-ring in a face-seal configuration. They are also 
fitted with pressure relief  valves as a safety measure to prevent the buildup of  hazardous pressure 
levels. 

3. ELECTRICAL 

OVERVIEW 

The Seabee electrical system provides the robot and its systems with power and provides the 
appropriate interface between all of  the electrical devices. The main electrical system is made up of  
two backplanes, and three daughter cards each featuring its own Atmel 1280 microprocessor. This 
eliminates the need for excessive wires inside the submersible hull, giving the final product a cleaner 
look, and increasing the overall reliability by alleviating the risk of  loose wires and poor connections 

3.1 POWER DISTRIBUTION 

The Seabee Power Board is developed as a versatile platform on which to develop a wide array of  
electrical systems. In addition to supporting the vehicle's power management and regulation needs, 
the Power Board serves as an interface for any sensors not capable of  directly interfacing with the 
XTX Carrier Board. 

At the heart of  the power board is the Parallax Propeller P8X32A microcontroller. The P8X32A has 
eight 32-bit processors, making it well-suited to the robot's high-precision, low- latency 
requirements. Nicknamed BeeSTEM, the microcontroller is responsible for maintaining 
communication with these sensors. As the BeeSTEM receives data from the sensor suite, it updates 
its control loops and forwards the data to the XTX Carrier Board. The BeeSTEM also produces the 
appropriate commands to initialize the sensors and place them in desired operating modes. 

The Power Board produces regulated power at the common voltages of  +3.3V, +5V, and +12V. To 
ease the process of  swapping or adding sensors, the Power Board has auxiliary connectors. The 
Power Board incorporates nine motor drivers, which are controlled by BeeSTEM. Six of  these 
provide power to the thrusters, and the other three support additional actuators, such as the Marker 
Dropper or Torpedo Launcher. 

3.2 COMPUTING 

Computer design for the Seabee is governed by the vehicle's need to perform complex computer 
vision and machine learning algorithms in real time in spite of  restrictive space requirements. An 
XTX computer-on-module (COM) was selected for its balance between size and performance. The 
Seabee XTX Carrier Board was designed to break out important signals such as power, USB, VGA, 
and Ethernet, SATA, and USART.  

3.3 SENSORS 

The Seabee sensor suite was designed to provide as close to a 6-DOF state-space solution as is 
possible within team budget. The Seabee is capable of  actively monitoring the status of  its own 



systems through the use of  internal temperature sensors, internal pressure transducers, current 
monitoring in each motor driver channel (nine total), and coulomb counting in each battery pod. 
Four high-performance Internet-Protocol (IP) cameras equipped with wide-angle lenses are used to 
complete specific vision-related tasks and to provide an additional position estimate via visual 
odometry. 

For the aforementioned 6-DOF localization the Seabee incorporates a Xsens MTi Attitude and 
Hearing Reference System (AHRS), a Honeywell HMC6343 3-axis compass, and a pressure 
transducer used to calculate depth. The primary advantage of  using an AHRS like the MTi over a 
traditional inertial measurement unit (IMU) comes in the form of  the unit's on-board signal 
processor, which allows it to be calibrated for the electromagnetic fields present on the Seabee and 
thus achieve virtually no drift. 

Some of  the sensors on the Seabee such as the IP cameras, are capable of  directly interfacing with 
the XTI carrier board via USB. Most of  the sensors on the robot, however, utilize serial protocols 
such as RS232, I2C, and SPI. The BeeSTEM is responsible for meeting these bus requirements. 

3.4 BATTERIES 

The Seabee battery system consists of  two custom +22.2V lithium polymer battery packs in parallel 
for a total of  20,000 mAh. Each pack contains a Seabee Battery Board based on the ATMEGA 406 
microcontroller. In addition to regulating the LiPo cells to ensure even discharge, the Battery Boards 
actively monitor state of  charge (SOC) through use of  current integration, or “coulomb counting”. 
Each Battery Board incorporates an LED display to provide visual feedback to the operator. 

3.5 KILLSWITCH 

The killswitch was designed with reliability as the primary focus. The design is robust and minimal, 
functional in the most demanding situations. A single reed switch is mounted inside the primary hull, 
actuated by a magnet tethered to the outer hull. A tiny logic-gate- based circuit ascertains the state 
of  the reed switch and produces a 5V TTY “kill” signal to the microcontroller on the power board. 
The microcontroller is then responsible for placing the motor and actuator drivers into a low-power 
state. 
One can place a high degree of  confidence in the killswitch as its implementation, which takes place 
at the lowest level possible short of  physically disconnecting the batteries, ensures that it will 
function properly even if  other systems on the sub malfunction. Additionally, the robot's software 
monitors the state of  the killswitch via the power board microcontroller. This means that if  the 
robot enters the “kill state”, processing can be halted until the state is exited and then proceed as 
normal, a helpful tool during development. 

3.6 PASSIVE SONAR ARRAY 

A passive sonar system is essential to completion of  the recovery task, and can provide an estimate 
of  relative location to be incorporated into the SLAM implementation. F Four Reson TC4013 
hydrophones are placed in a tetrahedral configuration in a pressure case attached to the primary 
mechanical frame. The hydrophones are spaced to allow for non- ambiguous determination of  
phase difference between incoming waves in the 20-30 kHz range. Using a plane-wave 
approximation, a high-confidence estimation of  the relative 



location of  the pinger in three-dimensional space is obtained. 
or the sake of  minimizing complexity and integration time, a largely DSP-oriented approach was 
chosen. The Electrical Team's role in the sonar system, then, is to ensure that the hydrophone signal 
makes its way to the computer with minimal loss. Due to size limitations, placing a full ADC 
solution in the same pressure case as the hydrophones is not possible. Instead, a single-channel 
preamplifier stage is connected to the immediate output of  each hydrophone, inside the pressure 
case, and the ADCs is placed inside the main hull. Because of  the small distance between the 
hydrophones and preamplifiers, very little noise is amplified. Since any noise picked up between the 
preamplifiers and the ADCs will have a significantly lower amplitude than the hydrophone signal, 
filtering is trivial. The ADCs interface with the on-board computer using Cheetah SPI Host 
Adapters. Each ADC- Cheetah pair (one per hydrophone) can achieve a sampling rate of  40 MHz. 
As such, the data that reaches the software portion of  the sonar solution is as close to the “pure” 
signal as possible. 

3.7 ACTUATION 

The actuation daughtercard features twelve H-bridge motor controllers with PWM. Six controllers 
directly drive the robot’s thrusters, and are able to run them forwards and backwards, as well as to 
throttle them effectively via a PWM signal. The other six controllers can be used for manipulators 
on the robot, including the dropper and torpedo firing system. The current draw of  each motor 
controller is monitored by a current sense resistor, providing the computer with vital information as 
to the power being drawn by any motor. The computer is also able to shut off  any or all of  the 
motors in the event of  a malfunction. The vehicle employs six SeaBotix BTD-150 thrusters. They 
are positioned to allow for control over all six degrees of  freedom. 

4 SOFTWARE 

4.1 UBUNTU 

Seabee3 uses Ubuntu Linux 10.10 “Maverick Meerkat” as its operating system. This selection was 
made based on the open-source nature of  Ubuntu, its portability, and its good support for our 
intended software architecture. 

4.2 ROS 

Seabee has used ROS, an open-source toolkit developed by Willow Garage, since the 2010 RoboSub 
competition. ROS, or the “Robot Operating System”, provides a language-generic, modular 
paradigm for the development of  software systems. 

System components are discretised into units called “nodes”, each of  which has at least one 
dedicated thread and the ability to control parts of  its life cycle. 

When necessary, these nodes are able to communicate via explicitly defined, language- generic 
messages sent over a named, simplex channel, or “topic”. The direction of  these topics is 
determined at compile time; a node can “advertise” an outgoing topic via a “publisher” object or 
“subscribe” to an incoming topic via a “subscriber” object. However, topics can be redirected or 
“remapped” at runtime, allowing for the creation of  more loosely-defined distributed systems. 



Arbitrary levels of  complexity can be achieved through the creation of  multiple publishers and 
subscribers within a node. More complex paradigms, such as “actions” or “preemptable tasks”, have 
been implemented to take advantage of  this fact. 

At a low level, inter-node communication is accomplished by message serialization within publisher 
objects, transmission of  serialized data, and message deserialization within subscriber objects. 
However, if  two nodes can be run on the same machine, and furthermore within the same process, 
this communication can instead be performed without serialization via shared pointers, thus 
allowing for high-performance, low-overhead communication.[ROS] 

Perhaps more importantly, ROS provides fairly generic implementations of  many common 
algorithms known to the field of  robotics, including such categories as sensing, navigation, planning, 
and visualization. 

4.3 QUICKDEV 

While ROS provides a solid foundation on which to build, working within the toolkit often involves 
creating unnecessary redundancies across implementations. Furthermore, the serialization-free 
communication described above is traditionally time consuming to set up, as modules utilizing it 
must follow the “nodelet” paradigm rather than the more common “node” paradigm. We solve this 
issue by maintaining a set of  scripts and generic wrappers around the more commonly-used ROS 
components in an open-source package called “quickdev” available in USC's “usc-ros-pkg”. 

4.4 VISION PIPELINE 



���
Seabee's view of  the competition pool 

In its current state, Seabee views the world through two PointGrey Firefly USB cameras: one facing 
forward and one facing downward. Both cameras are configured to stream bayered 320x240 images 



at 30 hz. While the hardware interface to these cameras is USB, they support the IIDC 1394-based 
Digital Camera Specification over USB, allowing for the use of  “firewire” camera drivers. 
Conveniently, ROS provides an acceptable firewire camera driver node, which we use to read images 
from our cameras. Figure 1 shows an example of  some of  the competition objects as seen by 
SeaBee's cameras. 

Images streamed from our cameras are bayered and distorted by various optical effects, including 
those from the camera lenses and the results of  different physical mediums surrounding the sensor 
tubes containing the cameras. To compensate for these effects, we use another useful community-
developed ROS node called “image_proc”, which utilizes several common OpenCV functions to de-
bayer and un-distort (given a camera calibration) the incoming raw images. 

Following basic low-level image filtering, we perform a color-space conversion from BGR to HSL. 
In order to optimize our the vision algorithms farther down the pipeline, we seek to mimic neural 
adaptation and avoid unnecessarily processing pixels that are not changing by a sufficient amount. 
This value is determined by calculating a weighted sum of  the differences between each pixel in each 
channel in the current image and the value of  that pixel at the point in time that it was last 
determined to have changed. Pixels found to have changed by a minimum amount are recorded in a 
binary mask, which is published along with the 

corresponding HSL image. We call this mask-image pair an “adaptation image.” Figure 2 shows an 
adaptation image fed to the color classifier, reducing the number of  pixels fed through the 
classification algorithm by over 90%. The bands seen in the middle image (probability image) are the 
result of  pixels that have not yet changed enough to necessitate re-classification. 

Newly-generated adaptation images are fed through a color classification node which utilizes a native 
Bayes classifier trained on actual camera footage. The classifier identifies newly- changing pixels, 
calculates the likelihood that a given pixel should be classified under each of  a set of  colors, and 
then publishes these probabilities as an array of  images, with each image representing the 
classification for the corresponding color. Subsequent color-sensitive feature extraction algorithms 
in the pipeline can utilize these probability images in their calculations. Figure 3 shows an example 
of  a probability image for the orange color produced by the color classifier next to the input image 
as well as the image on which the orange color model was trained. 

4.6 RECOGNITION PIPELINE 

Recognition and subsequent localization relative to landmarks, or unique competition objects, is 
critical to success in the RoboSub competition when the robotic platform used is not aided by a 
Doppler Velocity Logger; however, these landmarks are subject to change each year. From a 
software standpoint, it is desirable to interact with a generic landmark recognition interface rather 
than directly calling upon multiple specialized interfaces. In order accomplish this, Seabee utilizes an 
extensible landmark recognizer that accepts a landmark filter and calls on child modules to perform 
specialized landmark recognition. This ensures that, with the exception of  drastic changes to the 
competition, landmark-dependent algorithms can remain mostly unchanged, while specialized 
recognition algorithms can be easily developed, tested, and deployed through a standard, familiar 
interface. 

Where possible, it is desirable to be able to recognize landmarks via an adaptive, generic system, 
thereby avoiding as much specialization-related overhead as possible. SeaBee accomplishes this by 
calling on a scale- and rotation-invariant feature recognition system which utilizes OpenCV 2D 



feature extraction, or contour extraction, performed on color- classified images produced by the 
vision pipeline. A set of  template contour features, in the form of  normalized, rotation-aligned 
histograms, is trained for any landmarks or landmark components and passed along with any 
candidate contour features located within incoming images to a generic recognition algorithm, which 
calculates and returns match qualities for each template-candidate pair. In this way, specialized 
landmark recognition algorithms can offload a significant amount of  specialization to a central, 
generic system, yet still ensure the use of  alternate, arbitrarily specialized recognition methods. 

In its current state, SeaBee uses a specialized recognition algorithm for each unique landmark, 
excepting landmarks differing only in color. Furthermore, recognition is specialized based on the 
expected sensor source of  landmarks relative to the sub; for example, we assume that pipelines and 
bins will only enter the field of  view of  the downward-facing camera, while buoys, hedges, and 
windows are expected to be found only in the field of  view of  the forward-facing camera. Given 
this assumption, we only search for the former set of  landmarks in the images streamed from the 
corresponding source, and so on. 

We assume that certain landmarks are only located within certain parts of  the competition pool, and 
we further assume that given an arbitrary set of  goals, only some subset of  these landmarks need to 
be recognized. Given these assumptions, we conclude that it is possible to search for only some 
subset of  landmarks dependent on our current location and/or goal. Therefore, it is desirable to 
utilize some simple means of  applying a landmark filter, with either narrowing or widening 
constraints, through our recognition algorithms, in order to improve performance. We accomplish 
this via a custom color- and shape-based filtering API that accepts a list of  filter items, each 
specifying either a narrowing or widening constraint to be applied to the color or type of  a 
landmark. For example, when we are attempting to locate a buoy, we look for orange pipelines and 
buoys of  any color on approach, then look for buoys of  a single color on each buoy-touching 
attempt, then look for only orange pipelines and yellow hedges as we attempt to locate the first 
hedge, etc. 

4.7 SENSING AND LOCALIZATION 

Currently, our most advanced sensor is an XSens MTi IMU. This inertial measurement unit provides 
us with “drift-free” 3D heading and acceleration data calculated by an on-board EKF fed by the 
device's accelerometers, gyroscopes, and magnetometers in realtime at 100 Hz. Our team used this 
device effectively at the 2011 RoboSub competition to maintain a surprisingly accurate heading while 
navigating un-assisted within the competition pool. This year, we plan to expand our use of  this 
device to pitch and roll stabilization, both of  which proved to be significant issues for SeaBee while 
moving at high speeds during last year's competition. 

SeaBee's hull is also fitted with an external pressure sensor, which is used to estimate the absolute 
depth of  the AUV below the surface of  the water via an experimentally-derived conversion from 
arbitrary pressure units to a distance in meters. With our current electronics, this measurement is 
taken at about 10 Hz. 

Many other teams utilize a Doppler velocity logger (DVL), a very precise sonar device which can 
provide the linear components of  velocity and pose of  the sensor with respect to its environment. 
This sensor is currently out of  our price range, so we must rely on alternate, 

often noisy sources of  odometry. Furthermore, both the sensor and thruster configuration of  our 
platform is almost always subject to change; depending on the progress of  the electrical and 



mechanical teams, we may or may not have at our disposal a variety of  sensors, each with varying 
capabilities in terms of  both functionality and measurement noise. For this reason, we have found it 
necessary to develop both a generic realtime simulation of  our vehicle's dynamics, as well as a 
generic Bayesian measurement fusion system capable of  combining all components of  all 
observables, whether simulated or actual, into corresponding “filtered” measurements. 

Given our current sensing capabilities, the linear components of  pose and velocity (those that would 
be trivially provided by a DVL) are the most difficult for us to obtain. In order to compensate, we 
run a realtime simulation of  the sub's dynamics using a software library called BulletPhysics. Given 
our vehicle's mass, per-axis linear drag coefficients, the current thruster configuration (per-thruster 
capabilities and relative pose), and the motors value being set on each thruster, we are able to 
calculate all components of  pose and velocity with moderate accuracy. We then fuse this output and 
any other odometry measurements together on a per-axis basis into a complete odometry estimate. 

When combined, our filtering and simulation modules allow for maximum functionality and 
modularity within the constantly changing constraints of  our platform; as sensors are added and 
removed, the accuracy of  the corresponding measurements will vary accordingly. For example, if  we 
were to integrate a DVL into our platform, we would expect to see the accuracy of  the linear 
components of  our odometry increase significantly. As an added bonus, these systems also allow for 
the advanced testing of  other software modules via arbitrary levels of  simulation of  sensor values 
and other information, in circumstances when a desirable real-world testing environment is not 
practical or is entirely unavailable, or when the effects of  a theoretical change to the system need to 
be studied. 

4.8 NAVIGATION PIPELINE 

As with most of  our software, we sought to build our navigation system out of  modules with 
varying levels of  specialization, connected by generic interfaces. At a high level, our current 
implementation accepts a series of  navigation constraints in the form of  “waypoints,” generates a 
trajectory with an arbitrarily high “temporal resolution”, and then attempts to follow the trajectory 
within an additional set of  constraints. This functionality is distributed over several modules 
including a trajectory planner, a high-level trajectory follower, a low- level velocity-based controller, 
and a platform-specific serial interface. Any module wanting to accomplish trajectory-based control 
of  our vehicle must provide a trajectory to be followed. Within our system, a trajectory is composed 
of  discrete intervals, each containing a constant acceleration over that interval and the desired state 
of  the vehicle at the beginning of  that interval, in the form of  a waypoint (pose and velocity). Low-
level velocity-based control is also possible; indeed, it is utilized by our trajectory following module, 
which is discussed in a later section. 

A trajectory-planning paradigm was developed to simplify the creation of  these trajectories while 
following waypoint-based constraints. In general, a trajectory planner accepts a list of  two or more 
waypoints to be traversed in order, including the initial state of  the vehicle, any intermediate states, 
and the final state of  the vehicle, and returns a trajectory that meets the given constraints as closely 
as possible. The trajectory planner also accepts a temporal resolution parameter, which determines 
the maximum length of  intervals over changing accelerations, as well as constraints on the maximum 
velocity and acceleration of  the resulting trajectory (used to specialize the trajectory for the 
capabilities of  a given platform). We currently use a linear trajectory planner, which iteratively 
generates a trajectory between each waypoint, ignoring intermediate velocities for simplicity. Starting 
with the initial vehicle state, the planner attempts to accelerate at the maximum given acceleration, 
up to the maximum given velocity, and generates a new trajectory interval for each change in 



acceleration, following a simple set of  rules: if  the error in position to the current waypoint is below 
some threshold, the planner returns an empty trajectory; otherwise, if  the error in position is below 
some threshold, the planner attempts to strafe to the desired position, then attempts to face the 
desired heading; otherwise, if  the error in position is above some threshold, the planner attempts to 
rotate the vehicle to face the location of  the desired waypoint, then attempts to translate the vehicle 
to the desired position along its forward axis, and finally attempts to face the desired heading. After 
the final waypoint is reached, the planner returns the complete trajectory. 

After a trajectory is generated by a trajectory planner, it is passed on to a trajectory follower for 
realization. In this case, the trajectory follower is generic due to our generic trajectory design; 
regardless of  the implementation of  the planner that generated the trajectory, the trajectory follower 
can utilize the same algorithm to traverse the given trajectory. Along with a trajectory, this module 
also accepts constraints related to the accuracy of  the realization of  the given trajectory, including 
the maximum deviation from the trajectory, both in pose and time, as well as the planner to use, if  
any, to attempt to recover in the event that the given constraints are not able to be met. If  this 
failure occurs, the trajectory follower notifies the module that initiated the current goal, then 
attempts to re-plan from the vehicle's current pose to the beginning of  the given trajectory, if  a 
recovery planner was specified. In this way, the trajectory follower can be passed a trajectory that 
does not necessarily start at the vehicle's current state, and it will automatically prepend a path that 
brings the vehicle to the beginning of  the original trajectory, if  possible. For a given interval in the 
trajectory, the follower interpolates between the starting velocity and the calculated ending velocity 
according to the acceleration specified by the interval, for the duration specified by the interval, 
publishing a desired velocity at each step; this interpolation occurs at a user- specified rate, and can 
therefore be specialized for a given platform. Realization of  a trajectory, then, is as simple as 
iterating over all intervals in the trajectory, interpolating, and performing any recovery applicable 
recovery behaviors. 

The output format of  the trajectory follower (velocities) was selected to ensure generic means of  
controlling a given platform. However, generic conversion from desired velocity to platform-specific 
motor values was not handled, though it is likely feasible. Instead, we opted for a PID-based 
controller over error between current and desired position; specifically, for each movement axis, we 
employ both an independent PID controller and a specialized conversion function. In the current 
implementation, these axes include all individual linear and angular axes. However, we only seek to 
stabilize pitch and roll, while we seek to both stabilize and manipulate all other axes. That is, we 
actively attempt to keep the actual value for each axis near the desired value for each axis, but we do 
not allow the desired value of  pitch and roll to vary from zero. Therefore, in high-level code, we 
assume that the pitch and roll of  the vehicle are near zero. In the future, we may lift this constraint 
on pitch in order to assist in diving; the current implementation was chosen in order to simplify the 
vehicle's behavior. 

The final actuation is handled by a custom serial driver written specifically for our vehicle's current 
hardware implementation. This driver is able to read sensor values, including internal pressure, 
external pressure, and kill switch state, as well as set the voltage of  all motor drivers on the vehicle's 
power board. 

In order reduce the significant overhead required to interact with the vehicle's complex control 
systems, we have implemented a set of  motion primitives that allow the vehicle to be commanded 
through a short list of  simple yet powerful functions. These functions will automatically invoke the 
functionality of  the appropriate navigation components mentioned earlier, and include the ability to 
move to the position and/or orientation encoded in a pose, align to a position, orbit a given 



position, and activate the torpedo launchers and marker droppers. Furthermore, the pose of  a 
named object (whether static or dynamic), such as a buoy or any other landmark, can be trivially 
looked up and passed to these functions, enabling the creation of  short, easily-readable high-level 
navigation code. 

4.9 COMPETITION AI 

The final, highest-level controller in our software architecture is our competition AI. This 
component is responsible for directing our vehicle to perform the most effective possible action at 
any given time, given all known goals and constraints. It is also responsible for enabling/disabling 
lower-level, situational modules and filters, such as those related to movement, object recognition, 
and behavior production. We fulfill these complex requirements by discretizing all actions into 
subtasks, each containing any actions to perform as well as the cost (in terms of  distance and 
estimated completion time) and reward (in terms of  points earned) associated with the task. We then 
build a task tree of  arbitrary height, thereby allowing for an arbitrary level of  task specificity, and 
feed this structure into a custom hierarchical cost-based decision algorithm, which attempts to 
maximize the overall reward earned in the allotted time. Any distance-based costs are converted into 
estimated completion time using the vehicle's current pose and any distance that would be 
accumulated while traversing the tree down to that task. 
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