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Abstract - TartanAUV (TAUV) is a second
year Robosub team driven by undergraduate
students from diverse backgrounds and disci-
plines. We set out to use the knowledge we
acquired last year to design an enduring AUV
platform to use for the next several years.
This meant a complete overhaul of our engi-
neering processes, and the construction of our
second vehicle TAUV-20: Kingfisher. King-
fisher is extendable, easy to maintain and re-
pair, and larger than its predecessor Albatross.
To support the addition of a Doppler Veloc-
ity Logger, rotating sonar, and stereo vision,
we rewrote our software stack with 3D per-
ception and navigation in mind. We replaced
our off-the-shelf external controller with an in-
tegrated model predictive controller, allowing
us to more accurately execute complex 6DOF
maneuvers.

1 Competition Strategy

As a second-year team, TartanAUV’s driving goal was
to design an AUV that is sustainable for the future.
The first year was a great learning experience for us
and had a great impact on our strategy this year. One
of the biggest learnings was to focus on excelling in a
few tasks, rather than faintly trying all tasks. There-
fore, we set out to build a solid base for our AUV ac-
companied by rigorous testing on all fronts: mechan-
ical, electrical, and software. The Mechanical and
Electrical Team focused on designing a modular and
versatile AUV, which can be improved and adjusted
to run at the competition in future years. This deci-
sion was made upon the discovery that competition
tasks only varied slightly from year to year. We con-
cluded that creating a vehicle that could be slightly
adjusted to achieve the new tasks was the most pru-
dent course of action. The Software Team focused
on developing a generalized autonomy stack to move
away from a per-task hardcoded stack. We wanted to

Figure 1: Kingfisher

make it easy for new members to contribute and also
develop generalized autonomy algorithms that can be
leveraged for multiple tasks (e.g. MPC controller ).
Our software team firmly believes that investing in a
state-of-the-art simulator is one of the most rewarding
investments to succeed in Robosub. A software team
can do testing with much faster iterations in a simu-
lator. We devoted significant efforts into developing a
stable simulator, which later on helped us debug our
localization, mapping, vision, and trajectory planning
algorithms.

Keeping in mind how we nearly missed a perfect
buoy run due to hard-coded qual gate code in our first
year, we chose to focus on completing the first sev-
eral tasks with a high degree of precision, completing
the new vehicle, and securing a Top-10 rank. This
meant accomplishing software and maneuverability
based tasks, with a hopeful ambition to add manip-
ulators later on in the team’s schedule. We specifi-
cally focused on the gate, buoys, and path-following
tasks. We designed and rigorously tested these scenar-
ios in our simulator. Manipulator ideas and designs
were at their infancy when COVID-19 shutdowns hit,
completely stalling their development. We also tried
experimenting with our upgraded sensor suite which
included: 360 sonar, stereo cameras, and DVL.
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2 Design Creativity

2.1 Mechanical Design Drivers

This year, we fully redesigned our mechanical sys-
tem, looking to improve on the major limitations of
our first-year (2018-2019) vehicle. We identified ac-
cessibility to internal electronics, modularity of vehi-
cle internals, and thermal management of our inter-
nal electronics as three major areas of improvement.
Namely, the need to accommodate a larger main com-
puter (from the NVIDIA Jetson Tx2 to the NVIDIA
Jetson Xavier), two sets of stereo cameras, a DVL
(Doppler Velocity Log), Hydrophone acoustic system,
and upgraded IMU (Internal Measurement Unit) ne-
cessitated a larger enclosure. We also wanted the
flexibility to improve and adapt our perception and
compute hardware as we advance as a team and em-
ploy more advanced algorithms in future years, so we
intentionally oversized the electronics enclosure.

2.2 Enclosure System

The core of our AUV is a pressure vessel, consisting
of two transparent acrylic tubes joined by a central
aluminum ”midcap.” The tubes are joined to the mid-
cap with temporary double o-ring seals, so they can
be easily removed in a field environment for on-the-fly
electronics servicing. The midcap is a large (7” diam-
eter) 5-axis CNC machined part, which constituted
a significant manufacturing challenge for our team.
The midcap contains two o-ring tube seals on each
end, and four face seals around the circumference of
the part, which seal four removable panels contain-
ing cable pass-throughs. The enclosure is separated
into two halves, one for battery and power electronics
and one for compute and perception electronics. This
year, we decided to move the battery from a sepa-
rate sealed enclosure into the main enclosure for ease
of wiring and to reduce possible points of failure in
sealing and electrical connections.

Figure 2: Kingfisher Enclosure System CAD Model

2.3 Structural System

The main driver for our redesigned structural system
was the ability to easily service internal electronics,
especially on-the-fly both at competition, and at our
testing facilities in Pittsburgh. This drove us to a
folding chassis design, where the superstructure of
the AUV folds away, allowing access to electronics on

3 sides (left, right, and top). This design allows us
to have a compact profile during operation and ship-
ping, but also open access with minimal obstructions
during electronics servicing. We hope this design al-
lows us to quickly iterate and experiment with new
compute and perception hardware. The main acrylic
electronics enclosure is reinforced underneath with a
steel weldment, termed the ”spine.” The spine is de-
signed with maximum rigidity in mind, as it is the pri-
mary bracket on which vibration-sensitive perception
hardware (IMU, Stereo Cameras, DVL) are mounted.
Even small deflections of these sensors relative to one
another can throw off the localization algorithms, so
the spine weldment is as stiff as possible.

Figure 3: Kingfisher Structural System CAD Model

2.4 Electronics System

2.4.1 Compute

Kingfisher’s electronics package is designed to support
the complex needs of our software team, by provid-
ing the primary computer, communications systems,
power and battery management, and sensing systems
for the vehicle. The electrical design is optimized
around simplicity, compute performance in defined
areas like GPU and multithreading ability, I/O inter-
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Figure 4: Kingfisher Electronics System Overview

face availability, and power/space requirements. To
satisfy these goals, we settled on an NVIDIA Jetson
AGX Xavier as our primary single-board-computer
(SBC). This is an upgrade over the Tx2 unit we used
last year, and the AUV had to be designed around
fitting this larger computer. The upgrade was driven
by a desire for improved CPU performance and I/O
availability, allowing us to upgrade our cameras from
a single monocular camera in Albatross to a set of two
stereo camera systems this year (4 cameras total).

2.4.2 Power

The vehicle’s power system is managed by our custom
power distribution board (PDB), shown in Figure 4.
The PDB supports up to 200A power draw, while
measuring current draw and battery state-of-charge
information. It also supports an external hardware
kill-switch that can immediately disable all power to
the thrusters based on either a TTL input from our
magnetic kill switch, or a software pin controlled by
the Xavier in the case of a critical software fault.

2.4.3 Sensing

We removed the off-the-shelf Pixhawk unit that we
used last year with an Xsens MTi-200-VRU Iner-
tial Measurement Unit (IMU), which provides signif-
icantly improved attitude and heading information
to our custom Guidance, Navigation, and Control
(GNC) system. The Xsens was chosen because of its
proprietary software designed to improve resistance to
unmodelled magnetic field distortion in the environ-
ment, which is notoriously challenging to deal with.
This was a significant problem for us last year, so
we spent extensive time testing and verifying Xsens
IMU in magnetically noisy environments. The only al-
ternative is high performance MEMS or Fiber Optic
Gyroscopes (FOGs), although these are notoriously
expensive and hard to integrate into the sensing sys-
tem. The Xsens is also capable of operating in a

large variety of time synchronization modes. Addi-
tionally, we purchased and have begun integrating a
Blue Robotics Ping360 sonar.

The most significant upgrade to our electronics
this year was the addition of a Teledyne Pathfinder
Doppler Velocity Log (DVL). This sensor provides
accurate linear velocity data which can be fused with
inertial and visual data to provide a high degree of po-
sition sensing accuracy. To make this work, the DVL
needs to be precisely synchronized with the IMU. We
achieve this using the Xsens IMU’s sync port, which
allows us to output a regular sample signal to the
DVL, and receive an accurate timestamp from the
IMU indicating when the sample occurred with re-
spect to the IMU’s clock. We have not yet attempted
synchronization between the Xavier and the IMU, al-
though we intend to use either a direct Pulse-Per-
Second (PPS) clock sync between the devices, or use
the ETHZ clock bias estimator: Cuckoo Time Trans-
lator [1].

2.4.4 Communications

A significant upgrade this year was the transition from
slimrun cat5 ethernet cable and Fischer connectors to
Blue Robotics’ Fathom Tether and Subconn connec-
tors. This cable is neutrally buoyant, leak resistant,
and more mechanically durable than the slimrun eth-
ernet. Likewise, the wetmate connector is far more re-
liable in a marine environment. We also constructed a
top-side box, with a router and connections for power
and the fathom tether spool to provide wireless access
to operator laptops. Internally, we use a combination
of RS-232 and USB to communicate with sensors and
actuators.

2.5 Software Systems

The focus for this year’s software systems is creating
flexible code for autonomy. We draw inspiration for
our system design from well established autonomous
systems such as self-driving cars and exploratory mo-
bile robots. The software stack is split into State Esti-
mation, Perception, and GNC (Guidance, Navigation
and Control).

2.5.1 State Estimation

Underwater state estimation is known to be a chal-
lenging problem due to being in a GPS denied, low
visibility, and dynamic environment. We use an IMU,
DVL, and Depth Sensor in conjunction with an Ex-
tended Kalman Filter. However, in precision tasks,
these sensors can still develop drift. We have con-
ducted experiments in MATLAB involving the use of
Pose Graph based SLAM methods [3], [4], [7] to pro-
vide a framework for loop closure and landmark-based
localization.
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Figure 5: Kingfisher Perception System Overview

The Pose Graph minimizes an error function involving
the constraint between nodes:

eij(xi, xj) = zij − ẑij(xi, xj)

The objective function we must minimize over the set
of constraints C becomes:

F (x) =
∑

(i,j)∈C

eTijΩijeij

The system of equations is solved using a nonlin-
ear Levenberg-Marquadt optimizer. A full pose graph
implementation will be integrated before the coming
season. Currently, we use a combination of robot pose
and landmark Kalman Filters.

2.5.2 Perception

Regardless of what the specific challenge is, Kingfisher
must be able to perceive the world and accurately
gather information. The perception system is man-
aged by the Detector Bucket (Figure 5). A detector
will report a detection to the Bucket, which will spawn
a Detector Daemon to filter, and track the data. This
abstraction allows for asynchronous sensor informa-
tion and minimizes the latency between detection and
updating the robot’s beliefs.

We use the Mahalanobis Distance and the
Kuhn–Munkres (Hungarian) algorithm [5] to effec-
tively match and reject detections. This is useful
because the Mahalanobis Distance can incorporate
a sensor’s reported error uncertainty. Any efficient
integer programming algorithm can be used, includ-
ing graph-based methods such as Joint Compatibility
Branch and Bound.

Our vision detection system is composed of Deep
Neural Networks and classical Computer Vision de-
tectors. For simple detection tasks such as the gate,

we can use traditional line-fitting, which reduces over-
head and complexity.

The default tracker for detectors is a constant po-
sition Kalman Filter Tracker in 3D . In the event of
dynamic objects, the encapsulated tracker can be re-
placed by a higher order filter. Using a configurable
object manifest, any prior information about objects
(dimensions, location, quantity) are incorporated into
the robot’s beliefs. The end result is a 3D perception
system that allows for accurate navigation (Figure 7).

2.5.3 Guidance, Navigation and Control

We use a hierarchical nonlinear model-based control
strategy. At the low level, we use a differentially
flat dynamics model with flat outputs corresponding
to position and heading as well as their derivatives.
A low-level PID attitude controller is used to sta-
bilize the roll and pitch axes, while a custom linear
Model Predictive Controller (MPC controller) with a
2-second horizon based on the OSQP quadratic pro-
gramming toolbox is used to provide position and
heading tracking control. A second order linear model
based on the flat outputs is used, so the output of
the Model Predictive Controller includes acceleration
in x, y, z as well as yaw velocity. These are com-
bined with the roll/pitch velocity inputs from the at-
titude controller and fed through our inverse dynam-
ics model to determine a 6DOF force/torque wrench.
Finally, the Thruster Allocation Matrix (TAM) is ap-
plied to the wrench to determine 8 thruster force com-
mands which are each fed through the inverse thruster
dynamics model.

High level guidance is provided using a Motion
Utilies system, which provides easy-to-use trajectory
primitives for mission applications. While a trajec-
tory primitive is active, the Motion Utilities object
acts as a reference trajectory server providing a 2
second horizon reference trajectory to the MPC con-
troller. We have created a small toolbox of trajec-
tory primitives, including S-Curve (finite jerk) lin-
early interpolated trajectories, minimum snap trajec-
tories computed by a custom 5th order polynomial
spline optimizer based on OSQP, simple ray trajecto-
ries for following a straight line indefinitely, and search
area trajectories based on a polynomial bounding re-
gion within which to perform a grid search.

Quadratic Programming allows extremely fast con-
trol frequencies, easily satisfying our requirement of
20 Hz with a 2 second horizon time on our embedded
computer. Details regarding our MPC and Trajec-
tory optimization implementations can be found in its
own paper [2]. We are currently working on adding
parameter adaptation using EKF to allow our inverse
dynamics controller to learn and update model pa-
rameters online to reduce model innacuracies.
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2.6 Simulator

We realized early-on that having an offline testing
framework is very important for the software team
to iterate faster and develop a more robust software
stack. Our software stack is explicitly designed such
that the simulator is a drop-in replacement for our
low level sensor drivers package, and all other soft-
ware including controls, state estimation, and percep-
tion are tested in the simulator. CFD analysis is used
as a starting point for model identification of the ve-
hicle, allowing us to create an accurate digital twin of
our AUV for simulations (Figure 6). Our simulator is
based on the UUV Simulator [6] and with an added
software layer to fine-tune for Robosub.

2.7 Frameworks

We have been working on a set of frameworks aimed
to improve software reliability within our codebase.
First, a fault tracking service was designed to allow
ROS nodes to set and unset fault statuses in order
to centralize information about system health. Some
faults can be defaulted to active, and only cleared
after an initialization and verification phase, for in-
stance. This provides a quick way of verifying that
all systems are running nominally before switching to
autonomous modes or even arming the vehicle.

Finally, we use continuous integration to run auto-
mated build and test jobs to prevent regressions in
development. These automated checks have been im-
mensely useful as we have approach 300 commits and
30 finished pull requests on our codebase this year.

3 Experimental Results

We began testing new controls frameworks in the high
bay of Carnegie Mellon’s Robotics Institute early in
the year. However, once the quarantine began, we
transitioned to simulation (Figure 6). We created
mock navigation and perception tasks in our simu-
lator to test our software stack offline. Some of these
tasks include navigating to a point of interest, iden-
tifying the gate and navigating through it safely, and
testing our perception pipeline on a variety of new
objects (Figure 7). We wanted to ensure that our
system could handle higher level tasks that would al-
ways show up in Robosub competitions, regardless of
the specific challenge for that year. We rely heavily
on detailed visualizations and data analytics to gauge
the performance of our systems (Figure 8).
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A Components List

Components Vendor Model/Type Specs Cost (if new)
Buoyancy Control
Frame Various Aluminum 150
Waterproof Housing (Generic) 6in Acrylic Tube 150
Waterproof Housing Custom Aluminum Midcap Sponsored

Waterproof Connectors
Blue Trail

Engineering
Cobalt Series Sponsored

Waterproof Connectors Subconn DBH8F/DOM8M 300 per pair
Thrusters Blue Robotics 8x T200
Motor Controls Blue Robotics Generic ESC
High Level Controls custom

Actuators
Blue Trail

Engineering
Waterproof Servo Sponsored

Propellers
Battery Various 4s LiPo 16Ah Already Owned
Converter
Regulator Texas Instruments Various
CPU Nvidia Jetson Xavier Sponsored
Internal Comm Network RS232/USB
External Comm Network Ethernet
Programming Language 1 Python
Programming Language 2 C++
Programming Language 3 MATLAB
Compass See IMU
IMU Xsens MTi-200-VRU Sponsored

DVL Teledyne Pathfinder
Sponsored
(Leidos)

Camera(s) Stereo Labs 2x ZED mini
Hydrophones Aquarian AS-1
Manipulators

Algorithms: vision
Yolov3

Template Matching
Algorithms: acoustics FFT

Algorithms: localization/mapping
EKF

Pose Graphs

Algorithms: Autonomy
Model Predictive
Control (MPC)

Open source software

OSQP
OpenCV

ROS
Gazebo

UUV-Simulator
Team size (number of people) 7
HW/SW expertise ratio 1:1
Testing time: simulation > 100 hours

Testing time: in-water
0 hours

(Pandemic)
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