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Abstract—GTMR’s goal for Robosub 2020 was to increase the
reliability and robustness of hardware systems while also building
additional capabilities in navigation and perception to allow for
more tasks to be attempted successfully. On the hardware front,
a new pressure vessel was designed and prototyped to create
a more robust and modular sub. To improve both perception
and navigation systems, a new Intel RealSense Stereo camera
was installed to allow for visual odometry and SLAM, and a
hydrophone system was designed to allow for acoustic navigation.
To improve the machine-learning side of the perception system, a
genetic algorithm was used to improve hyper-parameter tuning,
and a water-clearing filter was used to improve training data. Due
to COVID-19, there was not much time to quantify performance
gains in real world scenarios; however, results from simulation
and unit tests are promising.

I. COMPETITION STRATEGY

Observing the performance from last year, aspects of the
sub’s design that GTMR excelled in include perception, depth
and heading control, mission/task planning, and software ar-
chitecture, while areas of improvement consisted of the fol-
lowing: hardware reliability, simulation, hydrophone systems,
and visual odometry. This year’s competition strategy was
to develop and implement additional features, both on the
software front and hardware front that would allow for achiev-
ing reliability for hardware systems, expanding capacity for
testing through simulation, and improving navigation systems,
specifically for the transitions between tasks, using both visual
odometry and hydrophone systems.

GTMR’s team structure this year has been massively re-
vamped from last year. Rather than have a small team that’s
familiar with most aspects of the sub, sub-teams have been
formed that are familiar only with the area of interest for that
particular sub-team. This allows for specialization in teams
and diversification in the features that could be concurrently
worked on. There are dedicated teams for each aspect of
Robosub varying from perception to hardware to even out-
reach. This new structure proved pivotal in the breadth of
improvements that could be started this year. It allowed for
a lower barrier to entry for recruitment and as a result, the
team grew massively from the previous year.

When deciding which issues to tackle first for the sub,
a simple priority queue was used, with the priority being
overall benefit towards completing the competition graded
against the time it would take to complete the issue. Last
year, only a few tasks were selectively targeted to streamline
development and maximize points. With the improvements

completed since then, new areas can be comfortably tackled
without compromising competition points.

Complexity this year was a big issue. With the addition
of new hardware systems, integrating everything in the exist-
ing sub architecture turned out to be a daunting endeavor.
Hydrophones turned out to be much more complicated to
implement than anticipated, and setting up a 3-D depth camera
that could natively run S.L.A.M wasn’t as simple as just
swapping cameras. However, when given the option between
sacrificing system reliability for a more complex system,
system reliability should be chosen every time. The year
started with a robust system that could already handle many
of the tasks for RoboSub without major alterations. With this
knowledge, the pursuit of adding new complex systems was
possible knowing that a reliable system was there to fall back
on.

II. VEHICLE DESIGN

This year’s vehicle design decisions were selected to match
the competition strategy. To improve hardware reliability, the
mission was to design and implement a new pressure vessel
to house sensors, power systems, and computers. The current
pressure vessel design is prone to leaks and does not properly
optimize space for mounting electronics. After that was done,
creating a simulation was the next hurdle. Having a robust
simulation is helpful for a variety of reasons namely the
ability to test mission logic, control algorithms, and perception
algorithms without having to be physically present at a pool.
Additionally, to avoid the issue of having to estimate distances
between tasks and hard coding commands for navigation,
visual odometry was investigated to allow the sub to have
an accurate state estimator that could aid in navigation. In
a similar vein, hydrophones were explored as a means of
estimating heading towards tasks that involved pingers. Lastly,
improvements were made to the previous year’s machine
learning framework for perception that could improve training
efficiency and object detection performance.

A. Hardware

When designing the new pressure vessel, considerations
were made to address the two main problems with the current
pressure vessel. These two issues are the aging characteristics
of the hull and a general lack of user-friendliness. Figure 1
shows the exterior and interior of the current pressure vessel
design. From these images it is clear that the the exterior of
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Figure 1: Current Pressure Vessel

the hull has epoxy in multiple locations to alleviate leaks that
have surfaced over the years, and the interior of the hull does
not efficiently use all of the space to mount electronics.

The first issue was the aging of the current hull. By using
a newly purchased acrylic hull and aluminum flanges, the
entirety of the existing hull will be replaced. This will offer a
fresh start for the hull itself, eliminating any aging character-
istics. The new hull and flanges are also of a different design
as the new hull flanges rely on a more robust mechanical seal
of dual O-rings interfacing with the inside of the acrylic hull
cylinder. The current hull design relies on adhesive sealant
holding the flanges to the ends of the hull cylinder. However,
the O-ring seal of the new hull makes removing the flanges
more difficult, and therefore makes removing the end-caps to
gain access to the hull more difficult. However, to combat this,
a new user friendly non-damaging tool designed specifically
for prying the flanges form the cylinder has been discussed.
On top of that, the task of removing the flanges becomes easier
with more practice.

Independent of the new hull, there have been design itera-
tions and planning focused on the system electronics. The goal
is to increase the organization, modularity, user friendliness,
mechanical and electrical noise reduction, and broader capabil-
ities. This will be done using a card-slot style layout where a
metal frame extending from one of the hull flanges will house
“cards” which contain various system components/electronics.
Early in new design iterations, these cards will serve more as a
mounting board for the electronic components such as ESCs,
Arduinos, Jetson, TMU, camera etc. and allow for wiring
up the system. Later in the design iterations, the goal is to
have a more fully integrated system where the cards will act
as daughter boards to a backbone board, all supported by a
metal frame attached to the hull flange. This will allow for
the design of more integrated and personalized circuitry which
simply slots in and interfaces with whole system. Ultimately
this would then allow for a more user friendly, customized,
and capable system. Figure 2 shows a CAD model of the new
pressure vessel along-side an initial rapid prototype.

B. Simulation

For the simulation environment, UUV simulator framework
was used as a starting point [6]. This choice was made
because it was implemented in Gazebo and had many default
models for vehicles and sensors that could easily tweaked

Figure 2: New Pressure Vessel

and customized to match GTMR’s configuration. It being
a Gazebo simulation made it natural to interface with the
GTMR software architecture, which uses ROS. Currently, the
default REXROV submarine was modified to match GTMR’s
submarine’s motor configuration and camera configuration.
With a similar motor configuration and camera configuration,
it became possible to tune controller gains and test out object
detection algorithms in simulation and then easily apply them
to the real sub.

C. Visual Odometry

The sub’s previous front facing camera was replaced by an
Intel Real Sense Tracking camera. With the new tracking cam-
era, the sub can perform distance calculations and S.L.A.M.
algorithm to boost performance. The Intel RealSense camera
uses stereoscopic depth sensing to determine the distance to
an object by using its two infrared cameras and triangulation,
allowing for an accurate depth measurement. A depth sensor
enables the use of visual odometry to estimate change in
position.

The real sense camera has the ability to natively run
S.L.A.M, which both saves time that would be spent writing
the algorithm and more importantly, doesn’t detract from
the performance of the sub. S.L.A.M enables accurate state
estimation that doesn’t solely rely on dead reckoning, which
is what was used in prior years. To get this working, the
intrinsics of the camera have to be set through calibration.
This was done though running the perception stack on the
sub during pool tests and using the real-sense ROS libraries.
Unfortunately, S.L.A.M was not fully implemented; However,
there still exist benefits from the increased visual clarity and
stereo vision from the camera upgrade.

D. Hydrophones

Although not currently complete, the proposed hydrophone
system was designed to be self-contained and use all 3 of
the team’s existing hydrophones. By creating a self-contained
system, it could easily be moved around the body of the sub for
better placement, and reused on other platforms, such as the
Roboboat and the WAM-V catamaran. Such a self-contained
system is well suited for adapting electrical isolation via an
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Figure 3: Hydrophone Array

independent low-ripple power supply, a necessity for low-noise
ADC measurements.

In a past attempt at creating hydrophones, the team dis-
covered that using the voltage regulated output of an arduino
while the arduino was generating PWM outputs resulted in
significant voltage level transients from the onboard regula-
tor, necessitating the need for an external reference voltage
regulator for the hydrophones. Similar to other designs from
other competitors [2], [5], [1], the hydrophone array was
designed to have a hardware pre-filtering and amplification
step, which would magnify the weak, piezeolectric pulses of
each hydrophone and perform band-pass filtering around the
known pinger frequency of 25 to 40 Khz. The removal of
spurious frequencies, particularly high frequency elements, is
necessary to reduce signal distortion and aliasing that would
skew frequency-domain analyses.

Although many hardware-based filters exist, the Butterworth
filter is one of the easiest to implement [4], leaving less op-
portunity for error over more complex filters while attenuating
unwanted frequencies well. For this reason, a Butterworth filter
was chosen for the bandpass filter. Although theoretically an
80 Khz sampling rate was the minimum rate necessary to avoid
aliasing, previous sampling at 110Khz proved inadequate and
from the reports of other teams [2], a minimum of 500Khz is
required to sample data well enough for signal detection.

Further signal processing would use an op-amp to multiply
the transient signal voltage by a factor of 1000 and bias
the signal such that at rest the voltage was mid-range for
the sampling ADC. This preprocessing step would allow the
ADC to sample the signal over its full range. The LTC2324-
16, a 16 bit resolution with a 2 Msps sampling rate over 4
channels was chosen for its ability to sample all 3 channels
near synchronously with high accuracy.

Data collection would be offloaded to an onboard compute
unit, most likely a Raspberry pi or a Xilinx signal processing
board figure 3 where the streaming data would be checked
against a noise floor threshold to see if a pulse had arrived.
If the streamed data exceeded the threshold, the data would
be retained in memory for further processing, being discarded
otherwise. The beacon-locating algorithm utilizing this data is
undecided and depends on the reliability and sensitivity of the
hardware when assembled.

E. Machine Learning

For the sub’s perception system, a machine learning frame-
work was developed last year in which object detection is
accomplished using the YOLO object detection algorithm [7].

Figure 4: Water Clearing Filter [3]

This year time was spent to improve the performance and
efficiency of last year’s object detection system. This was done
in two ways: smarter hyper-parameter tuning and an improved
data collection method.

Hyper-parameter tuning was initially done through a simple
grid search. Since this method exhaustively checks every
possible set of parameters, it is guaranteed to return the
optimal parameters given the search space. However, due to
time and computing power constraints, the search space itself
must be limited. This method also makes updating the model
an inconvenient task. Because of this, genetic algorithms were
also explored. Random chromosomes (sets of parameters)
were generated and each were evaluated for accuracy. Using a
tournament selection method, chromosomes were also chosen
to generate the next generation of chromosomes via n-point
crossover. Mutation was also included to prevent premature
convergence. Initial results were promising in simulation; how-
ever, further evaluation is needed to determine its effectiveness
in the real world.

Strides have also been made in data collection for percep-
tion. In last year’s competition, to achieve good performance
for object detection, the majority of training images had to
be taken in the environment of operation. This year methods
were considered to try and normalize images taken in different
environments. The goal was to allow the object detector to be
robust to different environments. One approach that was in-
vestigated is called Relative Global Histogram Stretching [3].
This method enhances the image, standardizes it to grayscale,
performs RGHS, and then color corrects the image.

With this method light absorption inconsistencies and scat-
tering can be avoided, thus improving the quality and robust-
ness training data. This filter can help save a considerable
amount time at competition that would be spent on collecting
training data and training object detection models. This time
would be saved because the filter would allow for models
trained on training data from the Georgia Tech CRC pool to be
usable in the Transdec. Figure 4 below shows how the water
clearing filter works. The original images are on the left, and
the filtered images are on the right.
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III. EXPERIMENTAL RESULTS

Prior to the pandemic, most testing took place in the Georgia
Tech pool. Most of the testing time was used to calibrate
the stereo camera for visual odometry and to test out visual
odometry performance. After the pandemic started, the addi-
tion of simulation capability allowed for testing tasks without
pool access. More specific optimizations, such as those to the
machine learning architecture were tested through unit tests
and test data. For the new pressure vessel, a full CAD model
was made, and an initial prototype was 3D printed. For the
hydrophone system, a conceptual schematic was formulated
and will be prototyped in the future.

To couple with the improvements to the machine learning
architecture, a new camera, the Intel Real Sense tracking
camera, was added to the sub which greatly expands the
potential for visual odometry while also increasing overall
camera quality and clarity. This was tested during pool tests
where calibration was done for the intristic matrix for the
camera and testing was done for the accuracy of the visual
odometry. Accuracy was defined as the error between the
predicted position of the sub and the actual position. The
position measurements were initially very inaccurate in the
pool prior to calibration though they became only mildly inac-
curate afterwards. This is very far away from the performance
of the camera on the surface, where it was very accurate
in measuring position changes. Based on repeated tests of
the position measurements underwater, it was concluded that
the camera is decent for attaining an approximation of sub
movement but shouldn’t be the sole source of state estimation.
In the future, this measurement will be combined with other
measurements and a system model in a Kalman Filter to have
a more precise form of state estimation.

The optimizations to the machine learning architecture were
tested primarily though unit tests as there was not enough
time to put the genetic algorithm on the sub to run real
time. The procedure was fairly straight forward. The genetic
algorithm was put into action to dictate hyper-parameters
during training and the results of which were cross verified
against the old set of parameters. The training data set was
made from images collected from rosbags in the past. The
genetic algorithm improved accuracy across the board for an
MLP classifier. The sub, however, currently uses a CNN and
YOLO darknet for object detection. To simplify the creation of
the genetic algorithm, the starting point was an MLP (multi-
layer perceptron) due to it having less parameters to alter, and
while this was useful for getting started, it turned out to be
less useful than intended for the sub as it is now. The next
immediate step would be to broaden the scope of the genetic
algorthm to accept the CNN and YOLO Machine Learning
architectures so that hyper-parameters can be tuned optimally
for maximum performance during object detection tasks.

Testing of the new pressure vessel involved partially recre-
ating the sub in SolidWorks, namely the hull and card slot
system. The design was inspired by the existing vessel layout
with careful consideration into existing problems, such as
leaks and user unfriendliness, the new hull cylinder, flange
constraints, and other various features. A sample frame was

Figure 5: Simulated Gate Task

created and then 3D-printed in order to first verify the fit.
Doing this resulted in decent performance, however a few
flaws were highlighted: tight-fitting components and difficulty
in machining parts. Machinability is a concern due to the end
vessel being machined from aluminium rather than 3D-printed.
Next steps for the pressure vessel would involve reworking the
3D model for better fitting components through the experience
gained from 3D printing the first time and restructuring parts
for more machinability.

The simulation environment served to be useful for testing
out task logic. Prior to the RoboSub cancellation announce-
ment in early May, it was a priority to develop a robust
simulation to test in due to the increased difficulty of finding
pools to test the sub in. Using the simulation environment, the
gate task was successfully simulated. This can be seen in the
figure below.

In the above figure, a CAD model of the gate is placed in
the simulation and the sub is using the YOLO object detection
algorithm to navigate to the side with the traffic light. The sub
is also running PID control logic to perform heading and depth
control to navigate through the correct side of the gate while
simultaneously performing object detection.

IV. CONCLUSION

The approach for this year’s competition was to optimize
the sub for performance while iteratively adding improvements
and new features. This was accomplished through the many
software optimizations in code that were created as well
as the hardware improvements and additions. The software
optimizations focused on reducing computational overhead
while the system was in use while the hardware additions were
focused on enhancing the ability to perceive underwater. A
more reliable form of state estimation has been implemented
in the new depth camera additions that will allow for the
completion of tasks more consistently, without worry that the
sub would get lost in between tasks. The perception stack,
which debuted last year has been vastly improved upon with
an array of new features and software optimizations. Although
unforeseen circumstances caused a huge shift in plans, GTMR
is confident about Robosub 2021!
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APPENDIX A
COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if bought new)
Buoyancy Control Sea Pearls Vinyl Coated Lace Thru

Weights
Miscellaneous sizes, 1-5 lbs. Varies, up to $30 for a 5 lb. weight

Frame Rails McMaster-Carr T-Slotted Framing Single $17.68 per 5ft. section
Waterproof Housing Custom Made Clear PVC Tube 7” ID N/A
Waterproof Connectors Amazon Generic IP68 Waterproof

Connector
2-8 pin Roughly $3 / connector

Thrusters Blue Robotics T200 No ESC $169
Motor Control Hobby King Afro ESC 30 Amp $11.36
Mid Level Control Arduino Mega N/A $38.50
Battery (Motors) Hobby King Turnigy Multistar 10000

mAh
4S, 10C $47.64

Battery (Electronics) Hobby King Turnigy Multistar 5200 mAh 4S, 10C $29.04
CPU Intel NUC, i7 (discontinued line) N/A From $212.83
External Comm Interface Microhard VIP2400 N/A N/A
Programming Language
(Navigation)

Python 3.7 N/A N/A

Programming Language (Vi-
sion)

C++ / Python 11 / 3.7 N/A N/A

Inertial Measurement Unit
(IMU)

Lord Microstrain 3DM-GX3-25 (discontin-
ued)

N/A $1615.00

Camera (forward) Intel Real-Sense Tracking Camera 3-D Stereo Depth Camera $149.99
Camera (downward) ELP Fisheye Lens 1080p Wide

Angle
$45.00

Open source software ROS OpenCV TensorFlow
Team Size 15 AE/ME/ECE/CS Rotated throughout year Priceless?
HW/SW expertise ratio 1:2 N/A All team members had basic

HW proficiency
N/A

Testing time: simulation 20 hours
Testing time: benchtop 15 hours
Testing time: in-water 30 hours


