
San Diego City College Technical Design Report
 1

San Diego City College Technical Design

Report 2020: Zoidberg Revisited
Jacqueline Alcazar, Regina Bochicchio, Jose Cardoso, Leila Lopez, Lukas Mueller,

Liza Porterfield, Juan Rodriguez, Terry Thompson

Abstract—San Diego City Robotics

Team is a team of engineering and

computer science students who plan to

compete in the 2021 Robosub

Autonomous Underwater Vehicle (AUV)

Competition. The strategy being

employed is to continue bench testing and

pool testing of the former team’s AUV, to

complete the pre-qualification video, and

eventually to incorporate vision ability

into the present system.

I. COMPETITION STRATEGY

The San Diego (SD) City Robotics

Team is part of the community college

environment, where student turnover is

frequent. None of the 2020 team members

were present in 2018, the last time a City

College Autonomous Underwater Vehicle

(AUV) qualified to compete at

Robosub. No members of that team are in

contact with the college today, although they

left a Github repository with their code. As

a team with mostly new members and a

limited equipment budget, it was decided the

best path forward was to use “Zoidberg”, the

2018 SD City College AUV, without any

appreciable changes (see Fig.1). This will

allow the team to focus on improvements to

the electrical system, further understanding

of the other systems and software, and pool

testing. The main goals for the 2021

competition are the following:

• Continued pool testing as soon as

circumstances allow,

• Completion of a pre-qualification video,

Fig 1. CAD drawing of Zoidberg

• Integration of the Nvidia Jetson TX2

microcontroller with Connect Tech

Orbitty Carrier, and the Zed camera,

which are ongoing projects for the team.

The eventual aim is to be able to

attempt a subset of the tasks that require

vision. These include touching the buoys

and surfacing in the octagon. If these tasks

become possible, the next step is to move on

to tasks that require additional equipment,

such as the marker drops, arm manipulation

and torpedoes. Another goal for the team is

to develop robust documentation for

Zoidberg’s various systems, to help future

City College Robotics Teams.

II. VEHICLE DESIGN

The last major modifications to

Zoidberg, the City College AUV, were

completed by the 2018 team. The 2019

team made one modification, replacing the

magnetic kill switch with a mechanical one.

The wiring of that project was never

completed. The 2020 team is planning

San Diego City College Technical Design Report
 2

future enhancements to Zoidberg, which

include completing the kill switch

mechanism, incorporating a separate

watertight enclosure for the battery, so it can

be swapped without opening and closing the

main enclosure, and a general wiring update

and replacement. Future plans also include

replacing the present microcontroller with a

donated Jetson TX2 computer and a Connect

Tech Orbitty Carrier, to facilitate using a

camera to complete some of the vision tasks.

A. Mechanical

The material used for the sides of the

Zoidberg chassis is a High Density

Polyethylene (HDPE). This is a

thermoplastic polymer made from

petroleum. This material is very resistant to

breaking even when under pressure and is a

good option for underwater-based

projects. There are two aluminum crossbars

at each end of the top of the chassis and one

on the bottom in the front. Two, additional

bracket crossbars, hold a rectangular center

platform. At the present time, Zoidberg has

2 watertight enclosures, cylindrical in shape

and made of clear acrylic. The main

enclosure has a diameter of 15.2 centimeters

(cm) and a length of 48.8 cm. Two U-bolts

wrapped in rubber and 3D printed cradle

mounts secure the watertight enclosure to

the chassis, using the crossbars. The

electronics board, containing the Pixhawk

autopilot, the Raspberry Pi microcontroller

and the electronic speed controllers (ESCs)

is in this enclosure, along with the LiPo

battery. The Pixhawk is connected to the

pressure sensor, which is installed into one

of the end caps of the enclosure. The

smaller enclosure is 30.0 cm long with a

diameter of 5.0 cm. It is fastened to the

front of the AUV using aluminum brackets

and a 3D printed mount. Eventually this

enclosure will hold the camera. Neutral

buoyancy for Zoidberg is provided by the

addition of two foam squares to the

chassis. Each is about 5 cm thick and is

about 12 cm on a side. These squares are

zip-tied to the front and back of the

AUV. The six thrusters are mounted in a

vectored configuration, with four used for

horizontal motion and two for vertical

motion. The horizontal thrusters are

mounted with aluminum bracket mounts,

while the vertical thrusters have 3D printed

mounts.

B. Electrical

The team constructed a schematic to

facilitate overall understanding of the

electrical system (see Fig. 2). A single,

four-cell, lithium-ion polymer (LiPo)

battery, with a capacity of 10,000 milli-Amp

hours, is used to power the entire

AUV. Power is controlled and distributed

by a power module and distribution board

(PM), which is combined in one unit. The

PM provides a regulated 5 volts for the

Pixhawk autopilot. It allows current and

battery to be monitored through the surface

computer base station software (when the

AUV is tethered). It also provides high

voltage/high current to the ESCs, which

control the thrusters. The ESCs have a

servo-type input which consists of a signal

wire and a linear battery eliminator circuit

(BEC). The BECs provide 5 volts to the

servo rail of the Pixhawk, which in turn

powers the Raspberry Pi. The Raspberry Pi

uses a USB connection to communicate with

the Pixhawk, using python code and the

Pymavlink library [1].

C. Software

The present software used by Zoidberg

consists of a series of Python programs

written by a member of the 2018 team. It

was not used during the 2018 competition.

This code resides in a Github repository [2].

San Diego City College Technical Design Report
 3

There is a navigation node which

communicates with the autopilot, as well as

a vision node. The navigation node utilizes

the Pymavlink library to communicate with

the Pixhawk. During testing, the surface

computer is used as a monitor/keyboard via

the Secure Shell (SSH) protocol.

The present team members have done

significant testing of the navigation node

(see Experimental Testing, below). The

vision node operates the camera, utilizing

OpenCV. The present team has not yet had

the chance to work with the vision node.

III. EXPERIMENTAL TESTING

The majority of bench testing was done

to establish how the software performed, as

none of the team members had experience

with it. In the fall of 2019, the present team,

with the help of the physics lab, designed

and built a small land robot that moved

using metal rolling castors, and had the same

vectored configuration of motors in the

horizontal direction. It was built of wood

and 3D printed material. The small robot

used the same electrical platform as

Zoidberg; Pixhawk Autopilot, ESCs with

linear BECs, a power module/distribution

board, and power from a LiPo battery. The

main advantage of the small robot was that

the motors could be tested continuously

without being in the water. The team was

able to learn about the workings of the

Pixhawk autopilot [3], and how

QGroundControl base station [1] [4] was

used to determine motor direction and how

the pressure sensor was calibrated. The next

task was to deploy the software. The team

acquired two Raspberry Pi 3B

microcontrollers and downloaded the pre-

configured image file provided by Ardusub

Fig.2 Zoidberg electrical system schematic

San Diego City College Technical Design Report
 4

to the Raspberry Pi SD Card. The Zoidberg

software was cloned from the Github

repository and added to the card. There was

a steep learning curve as familiarity with

both the Raspberry Pi, Linux and Python

was limited. Connectivity and data

transmission issues were particularly

troublesome. However, the small robot was

soon going forward, strafing, and turning

with software commands.

The limitations of the preconfigured SD

Raspberry Pi card were that it required a

static IP address on the surface computer,

and it did not allow the Zoidberg software to

run with Python 3. At this point, the team

acquired 3 Raspberry Pi 3B+

microcontrollers, downloaded the usual

Raspbian distribution, and

researched various websites [5] [6] to

configure it properly. The software was

then able to run in Python 3.

In the spring, the software was tested on

Zoidberg in the pool with good

results. However, the code failed when it

came to controlling depth. That was about

the time that all on campus activities were

curtailed by the coronavirus. Software

testing then continued via Zoom. The team

determined there are 3 variables in the depth

function where sign would affect vertical

direction. The team member who had

possession of the robot executed the depth

function for short periods of time for all 8

different possibilities, eliminating those

which caused downward thrust. For the

remaining combinations, previously-logged

data from a recent pool test were used for

actual depths, and the results from the code

were calculated using an Excel

spreadsheet. This test resulted in 2

discoveries for the team: 1) the correct signs

for the variables in the depth function with

the current thruster configuration and 2) the

fact that the direction of the vertical motors

could be switched to get the desired results

with all positive values for the depth

function variables. When the team can

return to pool testing, this can be verified,

and work on maintaining depth while

executing the mission will also be

continued.

IV. ACKNOWLEDGEMENTS

The San Diego City Robotics Club

would not be able to succeed in this

endeavor without the assistance provided by

many people and organizations. We would

like to thank Nvidia and Connect Tech Inc.

for their generous hardware donations. We

are particularly grateful to Ned Richards for

authoring both the navigation software and

the vision code we hope to use in the

future. A special thanks goes out to Steve

Volin and Kathrine Anduaga, who provided

invaluable assistance on many of the

technical aspects of this project, and Gina

Bochicchio, our faculty advisor. We would

also like to thank the administrators and

lifeguards at the Ned Baumer Aquatic

Center for facilitating our pool

testing. Finally, we gratefully acknowledge

the support and resources provided by San

Diego City College, especially Dean Randy

Barnes of the School of Engineering &

Technologies, Mathematics, Sciences &

Nursing, and Fred Julian, Chair of the

Engineering Department. Their continued

support affords us the opportunity to become

better engineers and scientists.

V. REFERENCES

[1] BlueRobotics, “ArduSub and the ArduPilot

Project”.[Online]. Available:

http://www.ardusub.com/ [Accessed 17 July 2020]

[2] San Diego City College Robotics,

“sdcityrobotics/zoidberg”. [Online]. Available:

https://github.com/sdcityrobotics/zoidberg [Accessed

17 July 2020]

http://www.ardusub.com/
https://github.com/sdcityrobotics/zoidberg

San Diego City College Technical Design Report
 5

[3] Ardupilot, “Pixhawk Overview”. [Online].

Available: https://ardupilot.org/copter/docs/common-

pixhawk-overview.html [Accessed 17 July 2020]

[4] Dronecode Project, Inc., 2019,

“QGroundControl”. [Online]. Available:

http://qgroundcontrol.com/ [Accessed 17 July 2020]

[5] Ardupilot, “Communicating with Raspberry Pi

via MAVlink”. [Online]. Available:

https://ardupilot.org/dev/docs/raspberry-pi-via-

mavlink.html# [Accessed 17 July 2020]

[6] The Robotics Back-End, “Rasperry Pi 4 Pins –

Complete Practical Guide”. [Online] Available:

https://roboticsbackend.com/raspberry-pi-3-pins/

[Accessed 17 July 2020]

https://ardupilot.org/copter/docs/common-pixhawk-overview.html
https://ardupilot.org/copter/docs/common-pixhawk-overview.html
http://qgroundcontrol.com/
https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
https://roboticsbackend.com/raspberry-pi-3-pins/

San Diego City College Technical Design Report
 6

Appendix A: Component Specifications

