
UFRJ NAUTILUS

Design and Implementation of UFRJ Nautilus’ AUV: BrHUE 2020

Gustavo R. Villela, Ana Clara L. Cruz, Felipe B. Costa, Ramon Christian Mendes,
Lara F. de Amorim, Vitor A. Pavani, Claudio M. de Farias

Abstract— This paper discusses the development and imple-
mentation of UFRJ Nautilus’ latest AUV (Autonomous Under-
water Vehicle) design: BrHUE 2020. Through the competition
strategy it is clear that the team philosophy this year was to
take the sub’s main weaknesses and turn them into its main
strengths: a reinvented SLAM based navigation system. With
that in mind, our main goal is thus to execute all tasks that
depend solely on the robot’s localization system. Through this
processes, not only was the localization improved as a whole
but there were also significant subsequent improvements in our
beamforming algorithm since last year.

UFRJ Nautilus is a team of undergraduate students from
the Federal University of Rio de Janeiro focused on building
low-budget and off-the-shelf autonomous vehicles.

I. INTRODUCTION

When developing a low-cost Autonomous Vehicle, several
factors come into play, not only on the materials needed
for its construction but also on the services and algorithms
utilised by it. This situation proves to be even more delicate
when dealing with an AUV. Given the constant risk of a
possible flooding of internal electrical components, special
care is needed when building its hardware. This framework,
combined with the current COVID-19 pandemic, calls for
imaginative solutions in order to be able to accomplish the
team goal of improving the current AUV project with as few
expenses as possible. As a result, the utilisation of open-
source drivers and algorithms as well as the constant use
and optimization of simulation software, prove to be good
alternatives in order to test all possible improvements even
remotely.

Although several efforts were made in order to compensate
for the lack of funding that, not only prevents us from
developing a new project but also limits our possibilities
for acquiring new and better sensors, we were able to
make significant improvements in our current project. This
evolution can be seen throughout all the team’s areas and,
combined with our improved and more focused strategy,
allowed us to expand even more on our AUV’s capabilities.

II. COMPETITION STRATEGY

This year, given our restricted funding and time to phys-
ically work on our robot, we decided to focus our efforts
on getting the most points possible from all tasks that don’t
involve any object manipulation.

Since the competition won’t happen on a physical envi-
ronment, we decided to simulate it on Gazebo with all the
tasks that we would have performed. By doing so, we were
able to make significant progress on the performance of our
sub, without the need to make direct changes to its hardware.

First, our proposed path initiates with the Coin Flip,
followed by passing through the Gate into the G-man side.
The choice will be predefined by our State Machine, which
will look for this image. After passing the gate, BrHUE will
perform a 720o yaw turn around its center in order to gain the
maximum Style Points and will proceed to follow the Path
using its bottom cameras. Then, it will go towards the buoys
in order to hit the Badge buoy given that we chose to follow
the G-man side of the gate. Finally, it concludes by following
the second Path and proceeds to the course by going directly
bellow the Octagon and emerges inside its boundaries. After
each try, BrHUE remains on, except for its motors, enabling
for better mapping. Both of these concepts will be further
expanded upon in future section of this technical report.

It is worth to mention that during all tasks, BrHUE will
be receiving precise control commands by its State Machine.
The latter will determine its decisions by using SLAM infor-
mation that, combined with the image recognition algorithms
of its Neural Network, will be able to determine where the
robot is located as well as which task to perform next.

III. DESIGN

Several factors contributed to the improvement of the latest
model of BrHUE. Though they may vary a lot in nature, we
can attribute them mainly to the acquisition of new resources
in the form of sensors or other types of hardware and -
most importantly - to a better and more efficient application
of them throughout all main areas of the team. Among
them, we can highlight the acquirement of a new IMU and
the implementation of four hydrophones provided by the
Brazilian navy, both used for our new and improved SLAM.
We maintained the general structure of last year’s version of
the sub in order to prioritize spending time testing it so that
we could improve the AUV’s software, which makes this
year’s version of the sub much more competitive.

Fig. 1: BrHUE 2020’s SolidWorks rendering .

1



UFRJ NAUTILUS

A. Mechanical System

Our robot was built mainly aiming to be a low cost version
of an easy assembly and disassembly project. Therefore,
the mechanical team adopted the concept of modularity so
that we could also achieve a cheaper and easier way of
transporting it. Nowadays it uses six Blue Robotics T200
thrusters in order to enable a total of 5 degrees of freedom:
x, y, z, pitch and yaw. Material-wise, it consists of an alu-
minum frame, a naval aluminum cover, an acrylic main hull
,attachments with UHMW covers and 3d printed thrusters
holders made of re-utilized ABS filament. Those materials
were chosen to achieve the lightest model while maintaining
high resistance and always being careful with our tightness.
As for a tightness improvement we added a pressure valve
that will ensure our hardware safety and guarantee an easiest
and fastest way to open BrHUE.

Furthermore, the team started using ANSYS software to
analyze different aspects of our AUV with both structural
and CFD(Computational Fluid Dynamics) simulations.

Fig. 2: Obtaining the deformation caused by an oversized
load applied evenly on the rods.

One that had direct influence on our current model was
the structural simulation of the rods in which we simulated
different materials with the purpose of achieving the highest
cost-benefit taking into account the least possible defor-
mation. The simulations showed us that the best materials
would be Stainless Steel or AISI 1020 Carbon Steel, which
presented very close deformations when loads equivalent to
the electronics weight were applied. Therefore, we opted
for using the latter material, since it has a lower cost. As
for electrical and software demands two new parts were
implemented:

1) Hydrophones: To improve our spatial arrangement and
better accommodate the hydrophone plate, we decided to
add an attachment to our frame, for the purpose of housing
this system. Also, in order to successfully dispose our
hydrophones in a way that would reduce the vibration noise,
a holder composed of a junction of 3d printing and resin was
made.

2) New kill Switch System: With the addition of a new
kill switch, we were able to turn off the AUV’s thrusters
without turning off our main system. Also, this year the
model was modified to achieve a more optimized version,
that would have our two magnets out of the acrylic instead
of one outside and one inside like we had last year. This
change brought us a faster and safer way to assembly.

(a) Hydrophone Attachment (b) Kill Switch

Fig. 3: 3D Models generated with SolidWorks.

B. Electrical System

The Electrical project of BrHUE was made to be func-
tional and low-cost. Since the priority of our team this year
was to spend the most time we could testing our AUV, we
decided not to make great changes on its electrical system.
So, we prioritized to improve the existing systems, making
the sub easier to operate. The AUV is made by the sum of
the following parts:

Fig. 4: Diagram of BrHUE’s Hardware.

1) Battery and Power Management: We use a 4S Lipo
battery and, in order to make it safe and stable, we make use
of a BMS (Battery Management System) partly fabricated
indoors. Besides using an Protection Circuit Module to
balance the cells, this year we built a board to indicate the
battery’s status and temperature both to the main computer
of the sub and the person operating it. This change made the
sub more secure and easier to operate.

2) Internal Communication: In order to integrate all of
the sensors and actuators to the main computer, we created
a system of internal communication. The motors and the
data acquisition boards have each an ATMEGA controller,
that communicate to the main computer by using the i2C
protocol. Some of the sensors such as the cameras are
directly connected to the main computer via USB.

3) Propulsion System: This system is responsible for
controlling and delivering power in a secure way to the
thrusters. This year, we upgraded this system by adding a
more robust security protocol against over-current and over-
voltage as well as a circuit able of measuring the current that
is going through the Electronic Speed Controllers.

4) Passive Sonar (Hydrophones): Acquiring the signal of
our hydrophones was the most challenging electronic project
on this year’s version of our sub. Since the acquisition boards

2



UFRJ NAUTILUS

on the market are too expensive and most of them are not
compatible with our software, we decided to make the whole
data acquisition system (filter, amplifier and A/D converter)
indoors.

This solution was not only cheaper than buying an acqui-
sition board, but was also simpler and more efficient.

Fig. 5: Acoustic data acquisition.

We made it by first processing the raw data (amplifying
and filtering the sign to the frequency of the pins on the pool),
then converting the data to be digital using a Analog Digital
Converter. The digital data is then processed by the micro
controller that sends the information to the main computer
by the internal communication system.

5) Kill Switch System: In order to guarantee the security
of the sub and the people around it without harming the
integrity of the whole electronic structure, we developed the
kill switch system. This system includes a magnetic key of 3
parts: the first "ON", in which the sub is operating normally,
the second "HALF", in which the motors are off but the the
computer is on, and the third "OFF", in which the bot is
all shut down. This year’s implementation of the "HALF"
part of the system, enabled people around the vehicle to be
safe manipulating it while all of the instances of the bot are
working. By doing so, no time is wasted re-initializing the
main computer between races and the cameras can still map
the environment even when the sub is not with it’s motors
on.

C. Software

This year, the main focus of development from the Soft-
ware team was to implement ROS-based SLAM algorithms
and, most importantly, integrate them with the rest of our
repository. In order to achieve these improvements, we also
implemented several changes in the Software team as a
whole, restructuring it in three main areas: SLAM, AI and
Simulation. Even though the main improvements can be seen
in the SLAM area, the team as a whole underwent a relevant
evolution, specially compared to last year.

Therefore, we were able to develop an absolute control
system based on our localization, which, when combined
with our image recognition neural network and state ma-
chine, enables a reliable autonomous navigation.

1) SLAM: In previous iterations of BrHUE, we based our
localization system solely on the sensor fusion provided by
the robot_localization package without taking into account
the frame of each sensor. This made it impossible for us
to truly have a reliable source of Odometry data, therefore
rendering our localization system extremely ineffective.

However, this scenario has completely changed since last
year. Firstly, we concentrated on correctly making use of

ROS’ TF library in order to properly establish all relevant
frames. Using the robot model’s urdf file, we are now
able to easily define all transforms without having to write
multiple broadcasters and listeners. This way, we have a
lightweight solution to our frame problems, given that ROS
has optimized functions to accomplish these tasks.

Furthermore, we expanded on this study by applying the
final urdf model (with the complete TF tree) on RTAB-
Map for ROS [1]. This consisted in loading the model in
this assortment of SLAM algorithms. To load the former,
it was necessary to research the inner workings of RTAB
and specially how it developed its SLAM. The algorithm
consists in developing a point cloud map - which is then
stored and can be later recognized in closed-loop scenarios -
via camera input and then fusing it with the Odometry data.
The latter can be provided either exclusively by the camera
system or by any other Odometry sensor - or via sensor
fusion algorithms - in order to perform the localization.

We therefore utilized the robot_localization package pro-
vided by ROS to accomplish the data fusion from our
localization sensors. This package consists of two types
of Kalman Filters which can be chosen by the user: the
Extended Kalman Filter(EKF) and the Unscented Kalman
Filter(UKF). As it is shown by [2], Kalman Filters are state
estimators used, in general, to calculate values for which we
don’t have direct measurements to and to fuse sensor data by
giving different weights to them and the state matrix model.
It is also known that EKFs are used for slightly nonlinear
systems - given their use of Jacobians - with Gaussian error
whereas UKFs can be used for even less linear systems but
requires an error of the same nature as the former, though
it can lead to high computing requirements [3]. Given its
flexibility and the low difference in computational power
demand in our case, we then opted for the UKF as our
estimation and sensor fusion algorithm.

However, in order to achieve the best performance pos-
sible, all sensor messages had to be adjusted to ROS’ stan-
dards, for which we came up with fast and effective solutions.
Since both depth sensor and hydrophones (as an ensemble)
provided their data in a non-standardized manner - the first
being floating point number data and the second being an
array of two angles: the robot’s azimuth and elevation angles
in respect to the pinger - the first step we had to take was
to republish both as Pose with Covariance Stamped ROS
messages in their original frames. An explanation of how
we fixed the depth frame can be found in the Appendices I.

Another great improvement since last year was an im-
proved version - created by our team members [4] - of our
Beamforming algorithm. A more in depth discussion o the
algorithm can be found in the Appendix II.

Finally, our tests on how well our localization improved
consisted in progressively adding sensors in our Unscented
Kalman Filter algorithm in our simulation. To guarantee the
consistency of the tests we made sure the robot performed
the same path (by recording a rosbag and playing it with the
different sensors setup) and then compared the resulting map
and location between each try and the exact values provided

3



UFRJ NAUTILUS

by the simulation. By doing so, we were able to more clearly
measure the influence each sensor provided to the final
SLAM. As a result, it became easier to tune the covariance
matrixes in our UKF, given that it was now possible to isolate
the source of drifts and/or noisy data sources. Although this
method provided us with relevant results, we were unable
to perform them in a real pool given the global pandemic
scenario. Because of that, some fine adjustments will still be
in need until the quarantine is finally lifted.

2) AI: We consider our robot’s intelligence everything
related to its decision making: from how much force it
decides to output in each thruster in order to move in a certain
way, to where it wants to go. Consequently, this encompasses
everything related to its Control System, Neural Network and
State Machine.

Last year, a great part of the problems related to the
AI area were due to the lack of a reliable localization
system which prevented us from performing an Absolute
Control System, which can be described by [5]. Therefore, by
implementing our SLAM we already had a better intelligence
as a whole, but more changes were made in order to further
this progress.

The current State Machine employed in the 2020 iteration
of BRHue was completely redesigned to incorporate a more
modular approach, while simultaneously making the access
to sensory data a lot more robust and reliable. To achieve
these goals, we have developed a system of hierarchical dis-
crete State Machines, implementing the ROS smach package.
In practice, this means we now have a main State Machine
whose states are other independent ones, each with the ability
to solve the different tasks of Robosub. This approach allows
for greater abstraction, since we are able to implement very
complex logic for a given task,without making the main State
Machine more convoluted than it needs to be. The only
states in the main State Machine that are not themselves
other State Machines are the navigation states, which are
responsible for taking the robot from one task to the next.
The other front in which this year’s implementation has
matured greatly is how information generated by sensors,
SLAM algorithms and the Neural Network is accessed from
within the state’s code. Said improvement was possible due
to the creation of a wrapper that stores the most recent
data from each input source from which all individual states
inherit from, and, therefore, have access to. This eliminates
completely the need of separate ROS subscribers, for each
state and simultaneously gives the data gathered a greater
sense of consistency. This occurs because all states interact
with the same data coming from the same instance of the
wrapper, and thus, agree on what information is available,
hence preventing possible inconsistencies.

Furthermore, for this iteration of Robosub, we decided
to drop the strategy of using our Neural Network as an
input to our main localization system due to inconsistencies
originated from different bounding box orientations. This
problem originates from the fact that, when recognizing an
object that is rotated, the dimension of the bounding box
may not match those of the recognized task, leading to an

erroneous size measurement, causing an inconsistency in
the size-distance ratio. Therefore, this year we decided to
maintain our object detection Neural Network YOLOv3 due
to its lightweight processing power and high accuracy, using
it only as an input to our State Machine to recognize whether
or not BrHUE has arrived on the next task, as represented
by Fig. 6 shown bellow.

(a) Vetalas (b) Beam

Fig. 6: Tasks recognized in simulated environment.

3) Simulation: In order to fill the gap created by a lack
of physical tests due to the COVID-19 pandemic, great
efforts were made by our team to optimize our simulation
environment. This changes enabled us to continue improving
our SLAM algorithms during the quarantine.

We began working with the migration of our simulation
software from Gazebo 7 to Gazebo 9, this change also
allowed us to migrate our ROS version from Kinetic Kame
to Melodic Morenia. The next change we worked on was
the 3D model of our sub, previously all 3D mesh used by
our simulation and in our visualization software (Rviz) was
direct exported from Solid Works, in terms of model mesh
fidelity this is the best workflow. Since the model exported is
too heavy to allow the simulation software to run in real time,
to overcome this problem we started using the 3D creation
tool Blender to optimize these models.

IV. EXPERIMENTAL RESULTS

A. Beamforming

With the help of the Marine Research Institute (IPqM),
tests were carried out where the signals emitted by a pinger
were recorded trying to imitate the possible signals that
could be emitted by the RoboSub pinger, that is, sine pulses
of 40ms every two seconds with frequencies of 25kHz,
30kHz, 35kHz, 40kHz. Four hydrophones were used, with
one hydrophone on the x axis, one on the y axis and two on
the z axis, in order to measure the azimuth and elevation
between the pinger and the hydrophones. For calculating
the algorithms times an average of 100 iterations was taken
plus standard deviation. The metrics used to evaluate the
implementation of Beamforming are: accuracy, precision and
execution time. Accuracy is considered good if the value
returned by the algorithm is within 5 degrees of the expected
value.

The time domain Beamforming, demonstrated good accu-
racy, but low precision, returning a set of possible angles. Its

4



UFRJ NAUTILUS

run time is acceptable, with an average of 0.5 seconds on the
tested hardware. On the other hand, frequency Beamforming
has good accuracy and high precision, with the algorithm
returning only a couple of angles, referring to the azimuth
and elevation of the sound source. Unfortunately, its average
speed on the tested hardware is around 1.3 seconds. Con-
sidering that the robot must run other algorithms besides the
Beamforming using lower end hardware, there is a possibility
that the execution time will exceed the 2-second time limit.

For the rapid implementation of the Beamforming we
achieved the same accuracy and precision as Beamforming in
the frequency domain. Its execution time was approximately
0.03 seconds, being the fastest algorithm among the three. It
is possible to see from the data that the rapid implementation
of Beamforming was the one that best suited the metrics,
having the best precision, accuracy and execution time.

Time Frequency Mixed(n=8)
Execution time 0.57 ± 0.01 1.35 ± 0.03 0.032 ± 0.002

TABLE I: Time ± standard deviation (σ) for the different
types of beamforming.

B. SLAM

The incremental addition of sensors to RTAB-Map proved
to be extremely effective. We hoped that, by doing so, we
would be able to evaluate how an IMU and depth sensor
improve orientation and depth accuracy respectively. The
path starting at (0,0) was originally made in Gazebo, for
which a rosbag was recorded and then replayed with each
sensor implementation as seen in Fig. 7, where V.O stands
for the Visual Odometry provided by RTAB.

Fig. 7: Path comparison with incremental sensor implemen-
tation.

Analysing the different returned paths it is possible to
pinpoint the moment of the trajectory where the algorithm
was unable to capture points for the map, even with the
textures at the bottom, which is where the V.O path describes
an elliptical motion. One possible explanation to this sce-
nario is that, before getting lost, the V.O was registering a
counterclockwise curve, whose data was then repeated until
the algorithm found itself again. From that point on, the V.O
then recognizes another curve but, this time, gathering points,
which returns a path that is slightly similar to the original

path’s second curve, besides the poor orientation - a common
characteristic of V.O algorithms.

On the other hand, with all sensors fused, it is clear to see
a significant improvement, specially orientation-wise. This
result confirms our expectations for the IMU’s contributions
to the final path. Using the same V.O, even with the lost
path, the IMU data prevents the sub from completely getting
lost and allows for a more accurate localization.

Fig. 8: Mapped path with V.O, IMU and depth sensor.

Finally, although there definitely is room for improvement,
the results showcased by our SLAM system show a clear
evolution from last year. Not only that, but is also worth to
notice the importance of our new kill switch in this Robo-
sub’s edition, given that this closed-loop scenario recorded
in Gazebo is only enabled by this new strategy of ours.

V. ACKNOWLEDGEMENTS

The UFRJ Nautilus team would like to thank all of the
people and institutions without whom it wouldn’t have been
possible to complete this project. Firstly, our thanks go to
all the team members, from technical and non-technical
departments, for their contributions to the team as whole, be
it developing the technology we showcased in this technical
report or raising funds and sharing the team’s image and
vision to the world. Moreover, we would like to thank all
of our supporters and sponsors, for giving us the financial
and technical support needed for the growth of our team.
Finally, we would like to thank our advisor teacher Claudio
Miceli de Farias, the Tércio Pacitti’s Institute and the UFRJ
Polytechnic School that assist us and provides laboratories
to work.

REFERENCES

[1] I. Z. Ibragimov and I. M. Afanasyev, ”Comparison of ROS-based
Visual SLAM methods in homogeneous indoor environment ”, IEEE
14th Workshop on Positioning, Navigation and Communications
(WPNC), Bremen, 2017.

[2] A. C. Charalampidis and G. P. Papavassilopoulos, “Computationally
Efficient Kalman Filtering for a Class of Nonlinear Systems”, IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 3,
2011, pp. 483–491.

[3] Y. Hao, Z. Xiong, X. Wang and F. Sun, “Comparison of Unscented
Kalman Filters”, International Conference on Mechatronics and Au-
tomation, 2007.

[4] S. Simplicio, H. Júnior, G. R. Villela, F. Costa, V. Pavani, L. Ro-
drigues and C. de Faria,”Development of the UFRJ Nautilus’ AUV:
A Multisensor Data Fusion case study”, International Conference on
Information Fusion, South Africa, 2020.

5



UFRJ NAUTILUS

[5] V. Rasvan, ”Absolute stability of a class of control systems described
by functional differential equations of neutral type”, Equations Differ-
entielles et Fonctionnelles Non Lineaires, Paris, 1973.

APPENDIX I
FIXING THE DEPTH SENSOR FRAME

When working with a this kind of sensor, one must
always remember that, no matter its orientation, it will
always return the same depth measurement. Although this
is consistent with its purpose, the transform in relation to
its parent frame (map) may return a measured depth that
does not correspond to the sensor’s actual depth in its frame
(depth_link), which we will respectively call Dm and Da.
Though this phenomenon, graphically represented in Fig. 9,
does not happen with a rotation along its z axis - since the
plane generated by the x and y axes will remain parallel to
that of the water, considering it completely flat - when there
is a change in pitch or roll of θ, the new measured depth D′m
will then be equal to cos(θ) ×Dm, which will be different
from Da.

Fig. 9: Rotated frame inconsistency phenomenon.

To prevent this contradiction, a possible solution is
to consider the measurement frame as a placeholder
(depth_placeholder) while creating an intermediate one (wa-
ter_footprint) between the former and the map frame. This
new frame will act as a projection of the robot’s movement
on the water’s surface, therefore it will always follow the
robot’s movement and have it’s z axis facing up - i.e.
perpendicular to the water’s surface. After that, we define the
transform between depth_placeholder and water_footprint as
a translation on the z axis equal to Dm while all other states
(x, y, roll, pitch and yaw) remain the same as its parent
the latter frame, as it is shown in Fig. 10. By doing so,
depth_placeholder becomes a virtual frame whose data will
be converted via a Lookup Transform command - i.e. a
listener - in order to guarantee that, in all circumstances,
Da = D′m = cos(θ) × Dm on the depth_link frame. In
practice, this method forces the depth sensor frame attached
to the robot to be always facing up. That way, it is then
possible to correctly implement the final measurements from
depth_link to the robot_localization UKF without having
frame issues.

As an example, let’s examine the case in which Da =
2m while the sub pitches with an angle of θ = 60◦. If the

Fig. 10: Frame fixing method via water_footprint.

correction is not made, then D′m = cos(60)×2 = 1m, which
is clearly inconsistent with Da. In contrast, by following the
proposed method, the TF system interprets depth_link’s Dm

as being Dm = Da

cos(θ) = 4m. Although this result might
seem odd at first, when comparing Da and the new D′m, we
do see that their values are both equal to 2m, which means
that the depth the rotated sensor frame perceives to be in is
equal to the actual value i.e. Da = D′m.

APPENDIX II
THE BEAMFORMING ALGORITHM

The simplest form of the Beamforming algorithm is to use
a multitude of sensors that will receive the signal at different
times and calculate its Fast Fourier Transform (Also known
as frequency Beamforming). By converting the signals with
a delay matrix, based on the configuration of the sensors, it is
possible to find the direction of the sound source through the
argmax of the square of the Inverse Fourier Transform. For
elevation and azimuth angles between 0 and 180 degrees, this
whole calculation can be costly enough so that the robot’s
position will already be out of date by the time the algorithm
is finished computing, or that signals emitted by the source
will be lost in the meantime, limiting its practical use for
real-time localization.

In order to find the direction of the pinger, it was then
proposed to combine the Beamforming algorithm in time
together with that of the frequency, the former acting as a
filter for the latter. The time domain Beamforming is faster
than the frequency domain previously discussed, but it is less
accurate, returning a region of possible angles, instead of a
pair. So we proposed to first use the time domain algorithm
and, for the set of angles it returns, it is computed again in
the frequency domain. The argmax of the frequency domain
Beamforming plus the min(argmax) in time domain is then
the angle of the sound source relative to the robot.

6



UFRJ NAUTILUS

APPENDIX III

Table of Components

Component Vendor Model/Type Specs Cost/If new
Buoyancy Control - - - -
Frame Forseti Aluminum Profile - -
WaterProof Housing Ciplast Acrylic - -
WaterProof Connections Seacon IL4MP/IL6MP/IL8MP/IL16MP - -
Thrusters BlueRobotics T200 5.25 / 4.1 kg f -
Motor Control BlueRobotics BasicESC R3 30A -
Controllers Digikey ATMEGA 2560 - -
Actuators - - - -
Propeller BlueRobotics T200 Propeller - -
Battery MaxAmps 5200mah 4S LiPo Battery - -
Converter - - - -
Regulator - Custom made - -
CPU/GPU NVIDIA Jetosn Tegra X2 - -
Internal Comm Network - USB/I2C/TTL SERIAL - -
External Comm interface - ETHERNET - -
Programming Language 1 - C++ - -
Programming Language 2 - Python - -
Compass - - - -
Inertial Measurement Unit Xsens MTi-G-AHRS - -
Cameras Logitech C920 - -
Hydrophones Benthowave Bii-7141 - -
Manipulator - - - -
Algorithms: vision - ORB - -
Algorithms: acoustics - Beamforming - -
Algorithms: localization and mapping - RTAB-Map and Robot_localization - -
Algorithms: autonomy - PID and FSM - -
Open Source Software - ROS and Linux - -
Testing Time: Simulation 200h - - -
Testing Time: In Water 25h - - -
HW/SW expertise ratio 1/2 - - -
Team Size 35 - - -

7


