Amador Valley Robotics Club

Amador Valley Robotics Club: Design of Nemo
AUV 2021

Suhas Nagar (President); Mechanical: Sri Parasaram (VP), Andrew Delevaux, Ishan Duriseti, Aayush Gupta, Dylan
Kwong, Isabelle Lo, Ifran Mohamed, Rohan Panjikkaran; Electrical: Edward Ding (VP), Jessie Chan, Eaton Huang,
David Li, Justin Yu; Software: Phoebe Tang (VP), Angad Bhargav, Michael Li, Kush Nayak, Kalyan Sriram, Nikhil
Sunkad, Craig Wang, Vincent Wang, Andrew Xiao, Serena Zhou; Business: Athan Yang (VP), Ethan Apalis, Myra Qin,
Leo Shao, and Xina Wang

Abstract—This year, AVBotz’s new submarine, Nemo,
was finally designed and assembled despite the chal-
lenges that COVID-19 placed on the team. With a design
that focuses on stability and modularity, Nemo is now
able to accomplish tasks more efficiently than before
without the extra weight of the previous submarine,
Marlin. During the transition to a new submarine, the
electrical division took the opportunity to overhaul the
electrical system by organizing the components to make
maintenance easier. Furthermore, since social distancing
guidelines prevented any effective pool tests from taking
place, AVBotz created a fully functional simulator in
Gazebo, which allowed the software division to test
code and vision functions without needing a physical
environment, improving the accuracy of the AUV’s
navigation software. All of these upgrades have allowed
Nemo to become the most optimized AUV that AVBotz
has created.

I. COMPETITION STRATEGY

The themes we set for ourselves during this
turbulent year were simplification and revitaliza-
tion, and we focused on making Nemo as efficient
as possible. Last competition, our team decided
to avoid torpedoes and instead focus on the core
tasks of simplifying our approach. Our modified
targets were:

1) Gate with style points

2) Bin drop

3) Hitting buoys

4) Surfacing in the octagon

To complete the tasks, computer vision is used
to detect the locations of the gate, bins, and
buoys as we navigate near the objects. Next, our
hydrophones algorithm is used to calculate the
angle to the octagon, allowing the sub to surface
within it. Additionally, we decided to attempt the
bins before the buoys, as touching the backside of
the buoys would yield more points.

In the latest competition, our accuracy was low,
especially for the bins task, and we were unable
to reach our goal of entering the finals. Upon
analysis, we attributed the low score to a flawed
hull, convoluted electrical wiring, and inefficient
navigation code. These factors have contributed to
the team’s drought of competition success, causing
us to focus on overhauling old architectures while
maintaining the same targets to simplify competi-
tion runs.

Our foremost priority this year was to construct
our new AUV, Nemo, to fix the shortcomings of
our previous sub, Marlin. In past competitions,
Marlin consistently displayed structural issues that
led to unexpected behaviors. A major problem
was the asymmetrical hull, which caused the AUV
to veer off course at high speeds, reducing our
accuracy for tasks such as gate and buoys. Thus,
we aimed to redesign the hull this year, focusing
on increasing the stability of our AUV. Further-
more, we designed Nemo to be modularized with
standardized panel slots, allowing members to
replace any panel and optimize the vehicle’s ease
of maintenance.

Due to the restrictions set by COVID, our
team had to come up with a unique solution to
testing our mission code and submarine. This year,
our software division directed their resources into
creating a simulator to test our mission code in-
stead of an in-person pool test. This data-focused
approach of testing allowed us to debug code
at a dramatically increased rate, adjust the low-
level motor control process for smoother move-
ment, and develop more accurate navigational ap-
proaches for the gate, bins, and buoys. In previous
competitions, our navigation methods had a high
degree of inaccuracy due to the program’s inability
to have the sub readjust itself. However, because

Amador Valley Robotics Club

of the simulator’s ability to pinpoint issues and
errors, our team has developed new navigational
methods that are slower but more precise, while
also optimizing different navigational aspects to
compensate for the decreased speed.

Sticking to our goal of revitalization, we also
focused on overhauling our previous software and
replacing it with a new stack. This allowed us
to utilize more recent C++ and Python versions,
increase data distribution efficiency, and most
importantly, simplify the code base so that new
members could easily contribute new navigational
approaches.

II. DESIGN CREATIVITY

With COVID disrupting the past two years, we
were forced to temporarily halt our planned ac-
tivities and testing. To make progress on our new
vehicle during this time, each division came up
with unique ways to deal with the unprecedented
situation. The mechanical subdivision organized
safe meetings to exchange “kits” consisting of
parts and tools to construct separate pieces of the
vehicle at home while the electrical subdivision
adapted by hosting meetings online to discuss
possible simplifications to the electrical configura-
tions of our sub. The software subdivision focused
more on specialized research, including micro-
controller configurations, digital signal processing,
and machine learning. Through both individual
and group pursuits, we created all-new approaches
in terms of both hardware and software.

A. Mechanical

1) Symmetrical Hull Design: In previous years,
one of the largest problems with Marlin was
the irregular horizontal cross-section that yielded
balance problems. This caused Marlin to roll
over and pitch forward when in motion. Changes
to the overall shape of the hull were aimed at
creating symmetrical cross-sections to increase
control, leading to the design of two mounting
planes that would evenly distribute the weight of
the submarine. Now, Nemo’s center of gravity is
geometrically centered and allows for easier ma-
neuverability and an increase in the sub’s stability.

Fig. 1. Compared to Marlin (left), Nemo (right) has a more
symmetrical design, allowing the sub to remain stable while
moving forward at high speeds.

2) Mounting Plane Modularity: Not only do
the mounting planes resolve Marlin’s asymmetry,
but they also improve the modularity. Modularity,
or the flexibility of a system, was limited on
Marlin due to its irregular frame. Components
had to be redesigned to fit around odd shapes,
creating unnecessary constraints. To tackle this
problem, we designed six modular panels to be
placed around Nemo. These 3D printed panels
can be modified to seat any set of components,
allowing us to switch out or change any panel
while preserving the overall frame of the vehicle.
For example, we added a hole to one of the
panels to serve as the opening for the down
camera. The mounting planes also allowed us to
put multiple components outside of the MEB,
including the batteries, hydrophones, and cameras.
Each enclosure is not only fully independent and
waterproof but also transferable. This allows both
electrical and mechanical to use or replace these
components without much hassle.

3) Carbon Fiber Manufacturing Process: An
important aspect of constructing Nemo was man-
ufacturing the physical components of the subma-
rine, but due to the pandemic, we had to adapt
and implement handcrafted strategies.

In the process of creating new watertight com-
ponents for Nemo, the team first needed to decide
which material to use. The main candidates were
aluminum alloy and carbon fiber, as both could
easily withstand the water pressure. For aluminum
alloy enclosures, the manufacturing process would
be relatively simple and the costs would fit within
our budget. Furthermore, because the contour of
the enclosures was an open-top box, metal weld-
ing could be used to construct them. However,
after considering the cons of utilizing metal, we
realized that metal enclosures would be difficult

Amador Valley Robotics Club

to waterproof and would significantly exceed our
target weight. Although requiring a more intensive
production process, we ultimately chose carbon
fiber because it met our strength and weight stan-
dards.

To meet our budget constraints and strict
tolerances, the AVBotz team performed all of
the carbon fiber enclosure production “in-house.”
Through discussions with experts in the composite
industry and research into the process behind
carbon fiber utilization, the team implemented
a wet-layup and vacuum-bagging technique and
recorded the process with detailed documenta-
tion. First, the team built our hotwiring cutter
made from a spare power supply, PVC pipe,
and nichrome wire. With our custom setup, foam
was cut and glued to create the necessary exter-
nal/internal molds of our components to provide a
framework for carbon fiber. In preparation for the
wet-layup process, we also cut carbon fiber fabric
into specific 2D layouts that were nets of our 3D
shapes (the enclosure designs).

Fig. 2. Full model of Nemo that was used to guide manufacturing.

In the carbon fiber wet-layup process, the team
brushed resin and layered resin-saturated carbon
fiber sheets on top of the mold. The thick carbon
fiber sheets supplied structural rigidity for our
base layer while the thin carbon fiber sheets were
used to fill gaps and provide a smoother mounting
surface for other parts (camera enclosure, conduit
panel, etc.). Then, we placed the mold and wet
carbon in a vacuum bag to compress the carbon
onto the mold. The vacuum additionally squeezed
out any excess resin, making our final enclosure
even lighter. To prevent galvanic corrosion due to

contact between aluminum and carbon fiber, we
anodized our parts with a Type - 3 hard coat at
A&E Anodizing. Maintaining resiliency, ensuring
cost-efficiency, and sustaining proficient strength-
to-weight ratios, our modular components are
attached to the sub through 3D-printed clamps
and modular panels. Similarly printed handles are
attached to the top mounting panel to enable
simple portability of the entire AUV.

B. Electrical

1) Vertical Rack: Two key problems for the
electrical subdivision that we aimed to solve with
our new submarine were component accessibil-
ity and maintenance. The old electronics rack
on Marlin was cramped and poorly laid out —
electrical systems and components were generally
hard to access, which compounded our difficulties
in changing the batteries after a pool test or at the
competition. We tackled this problem by 1) mov-
ing some components outside of the submarine,
which will be touched on later, and 2) switching
to a vertically-mounted, double-sided rack design.
Instead of being mounted as a series of horizontal
shelves like in Marlin, Nemo’s rack is essentially
a wooden frame, laser-cut and manufactured in-
house, suspended vertically from the lid at the
top of the MEB. This new organization drastically
reduces the complexity of the wiring for the
electrical team, provides more room to build on,
and increases accessibility in an open layout from
both sides.

Fig. 3. Compared to Marlin’s rack, Nemo’s new vertical rack
design allows for easier accessibility to components for electrical
members.

Amador Valley Robotics Club

2) Components Outside the MEB: Another so-
lution to fixing our limited access to components
was to transfer parts out of the main electronics
bay (MEB). In Nemo’s design, key components
are placed outside of our MEB, allowing for easy
access. These include the batteries, hydrophones,
and cameras, which all have their own enclosures.
The independent boxes made moving the inter-
nal components much more convenient, allowing
mechanical and electrical to easily access them.
For example, swapping batteries in their own
enclosure became a breeze compared to swapping
batteries in Marlin, resulting in increased produc-
tivity in maintaining our new AUV.

3) Microcontroller Upgrades: Another press-
ing issue during the building of Nemo was the
aging, legacy microcontroller and sensor system.
Our old Marlin ran on a single underpowered
Atmega2560 microcontroller with 256KB of flash
and 8KB of RAM at 16Mhz, which placed a
severe constraint on the low-level system. This
limitation restrained the rate at which sensors
could be sampled and the fusion and estimation al-
gorithms that could be run on the microcontroller.

To remedy this issue, the team planned a com-
plete overhaul of the low-level sensor and control
system based on a philosophy of distribution. The
new system consists of several distributed, much
more powerful STM32G4 microcontrollers that
communicate via the UAVCAN communication
protocol over a central CAN-FD data network.
An SLCAN adapter directly connects the main
computer with the CAN network, and a ROS
bridge node allows the publishing and subscrib-
ing of UAVCAN subjects directly in ROS, si-
multaneously reducing complexity by eliminating
the need for a central board and more closely
integrating the sensor and control system with
the main computer. The resulting system solves
the problems of the legacy system by adding
much-needed processing power while increasing
modularity through the distributed architecture of
the UAVCAN/CAN network.

4) IMU Replacement: Another legacy compo-
nent we identified as problematic was our TRAX
AHRS, which, although accurate, had a high re-
placement cost if damaged. We determined that
modern, inexpensive 6-axis MEMS IMUs and

3-axis magnetometers, combined with an open-
source Madgwick [1] software fusion algorithm,
would be able to provide similar performance
at a much lower cost. Our approach combines
a common, inexpensive ICM20689 MEMS ac-
celerometer+gyroscope with a RM3100 magne-
tometer. We initially tested with an MPU9250 9-
axis IMU; however, we determined that the IMU
could not match the accuracy of the AHRS system
it was replacing, and thus we chose the ICM20689
and RM3100 instead. Ultimately, the new AHRS
system performs with the same accuracy while
outputting data at a faster rate, improving Nemo’s
ability to calculate its orientation in the pool.

wwwwwwwww

,,,,,,,,,

Fig. 4. New UAVCAN:-based microcontroller system architecture
with new IMUs integrated offers increased modularity, allowing
team members to easily replace different parts and make upgrades.

C. Software

1) Simulator: In prior years, our main method
of testing software was running pool tests; how-
ever, they were extremely time-consuming, prone
to hardware failures, and limited to small pools.
Thus, we opted to build an end-to-end simulator to
evaluate the stack, which allowed us to test motor
control and navigation in a competition setting,
saving countless hours of debugging.

Using the UUV Simulator [2] plugin, the sim-
ulator is implemented in Gazebo. All sensors,
including the Doppler-Velocity-Log (DVL) and
inertial-measurement unit (IMU), are included in
the simulator while the angle to the pinger is
calculated manually. To mimic real-life settings,
virtual cameras are calibrated with the same field

Amador Valley Robotics Club

of view as their real-life counterparts, and noise is
added to sensor data to create turbulent submarine
movement. The sensor data is then published
onto ROS topics, which the motor control process
subscribes to in order to estimate the vehicle’s
position. To move the AUV, the control loop
directs eight virtual thrusters, allowing the sub
to yaw and translate on the horizontal plane to
complete tasks.

We also needed to create a realistic visual sce-
nario to test the vision system. In order to do so,
green fog had to be added into the virtual world,
and competition props constructed in Blender
were exported into Gazebo. Because competition
props in the real TRANSDEC shift slightly during
each run, we mimicked the effect by using a
Python script that randomizes the locations of
props in each simulation, guiding software mem-
bers to avoid brute-force navigational methods.

However, we discovered that despite the sensor
readings with error, the simulator still appeared
too idealistic, as the AUV moved in perfect lines.
To fix this issue, a water current was implemented
with continuously shifting angles and speeds, re-
sulting in even more turbulence than a real-life
current. With this, we could better judge the
submarine’s ability to handle turbulent conditions.
We reasoned that if Nemo could perform tasks
successfully in an extremely chaotic simulator, it
would perform them well in a more peaceful pool.

Fig. 5.

Nemo attempting the gate task in the simulator.

2) Motor Tuning GUI: In the past, adjusting
the aggressiveness of the motor controller was
tedious and time-consuming, as it required recom-
piling and restarting the AUV to implement the

adjustments. As a result, the motor gains of our
submarine were not ideal, causing the AUV to
move with inaccuracy and instability. To fix this
issue, we created a graphical user interface that
allows the user to tune the motors in real-time
while remote controlling the submarine. Thus,
when pool tests resume, this method is expected to
save hours of tuning and allow the AUV to move
with more stability.

3) Low-Level Control Upgrades: Previously,
our state estimation only implemented a simple
filter to fuse sensor data, and our microcontroller
required a significant portion of the codebase to
be written in AVR macros, making the control
system gibberish to many of our newer members.
Thus, our main priorities were to implement a
Kalman filter to obtain a fused estimate of the
submarine’s position and to rewrite the code in
readable C. These changes are aimed at providing
more stable sensor data to Nemo while allowing
new members to contribute easily to the low-level
control process. Furthermore, the addition of more
powerful microcontrollers enabled our team to
begin utilizing the open-source Zephyr real-time
operating system (RTOS) to provide hardware
abstraction and threading, boosting the capabilities
of the system.

The PX4 [3] autopilot was briefly considered
for the new sub’s control system. Its easily modi-
fiable mixer system, which allowed quick config-
uration of frame types, was appealing to our team,
and the implementation of advanced control algo-
rithms, a direct ROS2 bridge, a working simulator,
and a well-optimized extended Kalman filter made
it a tempting choice. However, the team eventually
decided against adopting PX4; the custom nature
of Nemo’s sensors made it difficult to integrate
into PX4, and the system required a large amount
of configuration. The Ardusub system was also
considered and rejected for similar reasons.

4) Rewrite of Stack with ROS2: One major
problem with our software stack was the accu-
mulation of legacy, confusing code which made
it difficult for new members to contribute. To ad-
dress this productivity issue, the high-level guid-
ance system was rewritten using Robot Operating
System 2 (ROS2), C++11, and Python 3, allowing
us to leverage more modern C++11 and Python

Amador Valley Robotics Club

3 APIs. The rewrite also allowed us to redesign
legacy sections of the codebase and improve code
readability. In addition, using ROS2 has allowed
us to better integrate with popular Python-based
machine learning, robotics, and computer vision
frameworks while also providing backward com-
patibility with legacy ROS1 nodes.

5) Computer Vision: This year, we focused on
expanding our vision system’s capabilities, while
increasing the speed of our machine learning
models. Thus, we explored the novel YOLOVS
[4] vision algorithm, which offers state-of-the-art
accuracy at low hardware costs.

Previously, we utilized the EfficientDet-DO [5]
model for detecting objects in images because
it was lightweight, easy to train, and extremely
fast compared to old models. However, due to
the quick-changing nature of the field of Al
and computer vision, we quickly began searching
for an improved model to replace EfficientDet
with. After extensive comparison tests with other
contemporary vision models, our team chose to
implement a new vision system based on the
YOLOvVS algorithm. Our new YOLOVSs based
object detection model offers comparable accuracy
to the old EfficientDet algorithm while running
multiple times faster, at 87 FPS - a speedup of
almost 3x. The lightweight nature of the new
model allows easy simulation of the vision system
even for inexpensive laptops and removes the need
for a heavy, expensive, and power-hungry GPU
onboard the AUV. Its high update rate also enables
us to more quickly and accurately track objects in
our camera feeds, improving the accuracy of our
angle calculations and control code.

Fig. 6. Machine learning models detect the gate and buoys inside
of the simulator, allowing the sub to calculate the angle to the tasks
and turn towards them.

6) Spatial Awareness: In previous years, our
method of calculating the angle to an object was
inaccurate, as it assumed that pixel lengths were

proportionate to degrees. To solve this problem,
we developed a new method of calculating the an-
gle which uses trigonometry calculations, specifi-
cally the inverse tangent of differences between
coordinates, to arrive at the exact angle to the
object. This allows us to turn the AUV with more
precision, increasing success rates in tasks such as
the gate and buoys.

Another major problem was detecting the dis-
tances to objects. Because the AUV does not have
sonar sensors or depth cameras, we are unable to
directly access distances to competition objects.
However, we do have access to camera properties
such as field of view, sensor size, and focal length.
These attributes are then plugged into an equation
[6] that calculates the distance to the object. This
is a game-changer for our navigation system;
instead of using a brute force approach to guess
the distance to an object, the new instant calcula-
tion allows the AUV to deliberately approach an
object, increasing the intelligence of the AUV and
its overall efficiency.

7) Hydrophones: This year, we improved the
accuracy of our hydrophones by migrating the
approach from a basic Discrete Fourier Transform
to the Multiple Signal Classification (MUSIC) [7]
algorithm. This was a necessary change due to the
around 95% accuracy of our previous algorithm
in calculating the correct angle to the octagon.
Our previous code contained quadratics to assist
with angle-determination, and the math used to
determine usable roots caused the 5% chance of
error. After weighing the pros and cons of differ-
ent methods, we decided on using the standard
MUSIC algorithm because it was an efficient,
fairly simplistic, and well-documented method.
First, we take the amplitudes of the pinger’s
soundwaves from our uniform linear array of four
hydrophones, spaced apart at 0.0127 meters. Our
sampling rate is 286,000 samples per second, and
we process these signals with a butter bandpass
filter with a frequency of 25 kHz. Next, we
calculate the time delay between the first element
in the hydrophone array and each subsequent
hydrophone, using this delay to find the steering
vectors of the hydrophones and then adding back
the original noise subspace. We use this to re-
create the signal of the pingers and come up with

Amador Valley Robotics Club

a covariance matrix, which we then pass into
the MUSIC algorithm. The algorithm determines
a specific value for a spectrum between O and
180 degrees. The peak of the spectrum is the
most probable angle of arrival, allowing us to turn
towards the pinger.

I1I. EXPERIMENTAL RESULTS
A. Simulation

Because the pandemic prevented us from gath-
ering for pool tests, we instead polished the soft-
ware stack through simulations. In the simulator,
the sub has access to virtual thrusters, and it can
translate in six degrees of freedom akin to a real-
life AUV.

Through the simulator, we realized that the
old alignment method of using the vision system,
calculating the distance that the sub needs to move
to reach the object, and only moving once was
inaccurate because calculations could be off by
1-2 meters, creating a clunky movement system
that only had one chance to succeed. This year,
the simulator allowed us to test new alignment
methods that continuously readjusted the position
of the sub, executing a rapid loop of calculating
position offsets and adjusting the sub’s position
accordingly. Testing in the simulator indicated that
this method elevated the success rate of the bins
drop from 35% to 85%.

In addition, the simulator allowed us to test
novel angle and distance calculations. Using the
aforementioned updated approaches, the simulator
proved that the angle calculation was accurate
within +/- 5 degrees while the distance calculation
was within +/- 1 meter. These were satisfactory for
our purposes, and they transformed the way our
AUV can navigate by utilizing distance measure-
ments to accurately translate through the gate and
buoys.

Finally, the simulator also allowed us to up-
grade our method of obtaining style points; in
the past, the AUV turned in 90-degree blocks.
However, this was extremely time-consuming as
the sub needed to slow down as it approached each
waypoint, draining precious run time. But, through
the simulator, a new method of spinning was
implemented, which instead continuously set new
waypoints 90 degrees from the current position in

Fig. 7.

Nemo utilizes its vision system to continuously readjust
and align itself to the bin in the simulator.

a rapid loop to prevent the sub from slowing down.
This ultimately allows the sub to continuously
spin, which saves time in competition and looks
extra stylish.

B. Water Testing Enclosures

To finalize the new submarine, we have been
water testing the MEB, the two battery boxes, the
hydrophones box, and the front camera enclosure.
We started by filling the enclosures with water
to detect any obvious leaks and then submerging

Amador Valley Robotics Club

the components in members’ pools at home while
placing a GoPro inside each enclosure to help spot
any points of leakage.

Through water testing, we discovered that the
battery box initially had leaks through the screw-
holes and the corners of the lid. To fix these
leaks, additional sealing washers were used for
the screws, and 3D printed pieces were added to
each corner, increasing the clamping force in those
areas. These changes greatly reduced leakage, but
additional testing is required to ensure that no
water gets in.

Fig. 8. Water testing the battery box to make sure that the
enclosure is waterproof.

C. GPU Optimization

The Geforce GTX 1080TI is one of the most
power-hungry parts of our AUV. With the imple-
mentation of the new vision systems, we explored
the possibility of replacing the GTX 1080TI with a
weaker GPU that can inference without drawing as
much power. With the help of software members,
we were able to test a variety of CPU/GPU
configurations. With the benchmarks, we learned
that a leaner GTX 1070 or an AMD Ryzen 7
3700x would be more than enough for inference.
This meant that we would not have to utilize a
bulky GPU in the AUV anymore, allowing us to
scale down the electrical system and make the sub
easier to construct and maintain.

ACKNOWLEDGMENTS

We would like to thank our sponsors for giving
us the opportunity to create Nemo. We especially
thank Datron, who has helped us machine count-
less parts for our submarines. We would also like
to thank our club advisor, Mrs. Barnett-Dreyfuss,
for guiding us throughout this project and helping
us become the club we are today. We are grateful
for members allowing the club to test in their
backyard pools, as well as Amador Valley High
School for letting us use their pool. The club is
indebted to the dedication of our members, who
have all contributed countless hours to construct
our submarine. We also cannot forget the organiz-
ers of Robosub, who have allowed us high school
students to gain valuable experience in a robotics
team. Last but not least, we are all extremely
indebted to our parents who have always sup-
ported us, both emotionally and financially. Our
club would not be possible without the help of
everyone above.

REFERENCES

[1] Sebastian Madgwick. An efficient orientation filter for inertial
and inertial/magnetic sensor arrays. Report x-io and University
of Bristol (UK), 25:113-118, 2010.

[2] Musa Morena Marcusso Manhaes, Sebastian A. Scherer, Mar-
tin Voss, Luiz Ricardo Douat, and Thomas Rauschenbach. Uuv
simulator: A gazebo-based package for underwater interven-
tion and multi-robot simulation. In OCEANS 2016 MTS/IEEE
Monterey, pages 1-8, 2016.

[3] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4:
A node-based multithreaded open source robotics framework
for deeply embedded platforms. In 2015 IEEE international
conference on robotics and automation (ICRA), pages 6235—
6240. IEEE, 2015.

[4] Do Thuan. Evolution of yolo algorithm and yolov5: the state-
of-the-art object detection algorithm. 2021.

[5] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[6] Matt Grum. How do i calculate the dis-
tance of an object in a photo?, 2011.
https://photo.stackexchange.com/questions/12434/how-do-
i-calculate-the-distance-of-an-object-in-a-photo.

[7] Lan-yue Zhang and De-sen Yang. Doa estimation based on
music algorithm using an array of vector hydrophones [j].
Journal of Harbin Engineering University, 1, 2004.

Amador Valley Robotics Club

APPENDIX A: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if new) Status
Frame Custom Aluminum 90.50cm x 63.50cm x Sponsored Manufactured
6061 - T6 33.34cm
Main Waterproof In-House Carbon Fiber | 62.23cm x 22.76cm x $200 Manufactured
Enclosure Enclosure 35.24cm
sealed with 2
EPDM O -
Rings
Battery Enclosures (2) In-House Carbon Fiber | 10.50cm x 10.50cm x $120 Manufactured
Enclosure 23.95cm
sealed with
single EPDM
O - Ring
Hydrophones Enclosure In-House Carbon Fiber | 13.00cm x 10.00cm x $120 Manufactured
Enclosure 19.62cm
sealed with
single EPDM
O - Ring
Waterproof Connectors SubConn Circular (Varies Based on Reused Installed
Series Series)
Micro-Circular Series
Power Series Coax
Series
Thrusters VideoRay M5 Thrusters 90mm Length Reused Installed
Propellers VideoRay Standard 90mm Reused Installed
Propellers
Motor Control Rugged Rugged ATmega 2560 Reused Installed
Circuits MEGA microcontroller,
Arduino Protoshield
High Level Control In-House PID Control Reused Free Installed
Batteries ZEEE 6s 6000mAh, 22.2V, Reused Installed
260Wh
DC Converter Cincon Brick 600W, 180-425V, Reused Installed
CFB600- 48V to 24V
300S
CPU Intel 17-4790T 4 Cores, 8 Threads, Reused Installed
Base Freq: 2.7 GHz,
Turbo Freq: 3.9 GHz,
Cache 8 MB
GPU Nvidia GTX 1080ti Memory Type: Reused Installed
DDR5x, 11 GB
RAM, CUDA Cores:
3584, Max Power:
250W, Min Power:
200W
Motherboard Jetway NG9J-Q87 4 USB 2.0 Ports, 2 Reused Installed
Mini ITX USB 3.0 Ports

Amador Valley Robotics Club

10

RAM Corsair Vengeance 2x8GB DDR3 Reused Installed
16GB SODIMM RAM
Storage Samsung ITB mSATA | Max Seq Read/Write Reused Installed
860 EVO Speed: 550 Mb/s
SSD
Internal Comm Network ROS ROS2 - Free Installed
(Eloquent)
External Comm - Ethernet - Reused Installed
Interface
Doppler Velocity Log Teledyne Explorer Type: Phased Array Reused Installed
(DVL) Marine DVL OEM Transducer,
Frequency: 600 kHz,
Max Depth: 1000m
Altitude Heading and PNI Sensor TRAX Static Heading Reused Installed
Reference System AHRS Accuracy: 0.3°
(AHRS)
Pressure Sensor Ashcroft K-17 Accuracy: +1%, Reused Installed
Range: Vacuum to
20000psi, Gauge
Range: 15 psig,
Input: 10-36V (DC),
Output: 1-5V (DC)
Front Camera FLIR BFS-U3- Frame Rate: 30 fps, Reused Installed
200S6 Resolution:
5472x3645,
Megapixel: 20MP,
Sensor Type: CMOS
Front Camera Lens Computar VO828-MPY 8mm fixed lens, Reused Installed
Resolution: 12MP,
Horizontal Angle:
77.3°, Vertical Angle:
61.7°
Down Camera FLIR BFS-U3- Resolution: Reused Installed
13Y3C-C 1280x1024,
Megapixel: 1.3MP,
Frame Rate: 170FPS,
Sensor Type: CMOS
Down Camera Lens Theia SY125M Focal Length: 1.3mm, Reused Installed
Resolution: SMP,
Horizontal Angle:
125°, Vertical Angle:
119°
Hydrophones Teledyne TC4013 Frequency Range: Reused Installed
Reson 1Hz to 170kHz,
Depth: 700m max,
-211 d13 £ dB
receiving frequency
Signal Processing Diligent Nexys 4 Block RAM: 4,860 Reused Installed

DDR Artix-7

Kbits

Amador Valley Robotics Club

11

Algorithms: vision Open source | EfficientDet- 87 FPS Free Installed
DO,
YOLOvS5s,
RGB
equalizing
filter
Algorithms: acoustics In-House MUSIC Hydrophones Free Selected
Algorithms: In-House DVL data, DVL, IMU, CV Free Installed
localization, mapping image
calculations
Algorithms: autonomy In-House Linear ROS2 nodes Free Installed
instructions
Open source software Open source | ROS, ROS2, Node management, Free Installed
EfficientDet- computer vision,
DO, digital signal
YOLOVSs, processing
OpenCYV,
MUSIC
Team Size (number of 29
people)
Expertise ratio (HW vs. 13:10 (8 Mechanical, 5 Electrical, 10 Software, 5 Business)
SW)
Testing time: simulation 50 hours
Testing time: in-water 75 hours

Programming
Languages

C++, Python 3

Amador Valley Robotics Club

12

APPENDIX B: OUTREACH ACTIVITIES

During this past school year, the first main
community outreach activity we organized was
our newsletter. AVBotz Monthly was sent to more
than 350 people and provided insightful updates
on each division’s monthly progression.

For the software division, we organized the
AVBotz GitHub Repository, which provides a
set of resources that are available for anyone
to use. We have open-sourced 35,000+ lines of
code on GitHub for other teams to access, and
we encourage collaboration between developers
across different teams to further the capabilities
of combined knowledge.

In the future, we hope to host an AVBotz Open
House, which our Business Team is currently
preparing for. At this open house, elementary
school students from our district will learn skills
from the multiple divisions in our team. We plan
to provide submarine-related coding workshops
led by the Software Team and various hands-on
activities led by the Electrical and Mechanical
Team.

However, our most important activity was a

community event geared towards middle schools.
Last spring, the ACE Coding club and AVBotz
held a PPIE Computer Building Workshop to
combat the lack of hardware education within our
school district’s curriculum, and AVBotz helped
by preparing components for the workshop and
also passing on knowledge that they might have
learned during their time in the club. During the
workshop, local middle-school students were able
to choose from 15+ courses, ranging from train-
ing machine-learning-based object detection algo-
rithms to building their very own computers. To
the teachers helping in the classes, it was an eye-
opening experience to witness kids being excited
about the field of STEM during our display. A
middle school boy excitedly showing off an object
detection model he had trained to his little sister
made us satisfied that we had done our jobs well.
Ultimately, we hope our workshop opened the
children up to the possibilities of STEM, and that
one day, they too, will build their own impressive
computers or solve the mysteries of the universe.

Fig. 9. Preparing and teaching Bay Area kids about tech.

