
MuddSub Page 1 of 16

Alfie 2.0: Seeking Greater Autonomy

Daniel Yang, Alex Fay, Kyle Rong, Yoo-Jin Hwang,
Sidney Taylor, Francine Wright, MuddSub team members

Harvey Mudd College
Claremont, CA, USA

Abstract—This article discusses the ongoing mod-
ifications of Alfie, MuddSub’s AUV first introduced
at the 2019 RoboSub on-site competition. Given the
additional constraints of remote testing and deploy-
ment in the past two years, we took this opportunity
to fundamentally re-evaluate the structure of Alfie’s
mechanical, electrical, and software stacks with the
criteria of novel and sustained contributions to vehic-
ular autonomy. The result is a framework of unique
subsystems, each operating under strict, predefined
specifications of information and command flow.
Under this structure, there are two distinct levels of
design decisions. High level design decisions affecting
overall competition strategy, including inputs and
outputs, are defined by the design graph. Low level
decisions affecting individual subtask strategies are
considered by the relevant interdisciplinary team.
The ensuing sections document both high-level and
low-level design decisions as well as provide empirical
results for current subsystems in the hope of future
comparison.

I. COMPETITION STRATEGY

In 2019, MuddSub entered RoboSub for the
first time with Alfie, an autonomous underwa-
ter vehicle. Alfie was designed with first-year
constraints in mind, including limited funding,
small team size, and limited pool test time. It
was built to attempt a small number of the
obstacles, but did so reliably. This year, we
present Alfie 2.0, the second iteration of our
robot. Compared to our previous robot, Alfie
2.0 is designed under different constraints. For
example, COVID-19 made it impossible for our
organization to test Alfie 2.0 the water. Under
these unique constraints, MuddSub’s competi-
tion strategy has evolved to set up our orga-
nization for long term competition success by

Fig. 1. A render of Alfie 2.0.

catalyzing development of robust and flexible
autonomous vehicles.

Rather than directly optimizing for points,
Alfie 2.0 focuses on what we call minimum-
prior autonomy - the ability to operate under
as little prior knowledge of the testing en-
vironment as possible while maintaining full
functionality. The most compelling reason to
adopt this architecture is the adaptability of
MuddSub’s work and generalization of tasks
to RoboSub’s changing ruleset, allowing Mud-
dSub to transfer prior work to the next com-
petition. Furthermore, the objective clarifies
the extent of complexity required to make a
reliable system. Over-complex systems tend
to focus too much on task details, which
goes against our objective. At the same time,
under-complex systems do not have the power
to generalize which is also counterproductive.
Minimum-prior autonomy specifies a middle
ground where the system is both sufficiently
complex and reliable.

MuddSub Page 2 of 16

This objective may initially seem unrelated
to RoboSub’s point system, but it is in fact
not the case. Between every competition year,
there is a limited amount of time teams have
to work on the robot. As such, the time teams
have in a single year is not sufficient to develop
a top-performing robot. However, if a robot is
built under minimum-prior autonomy, the time
spent each year can be allocated to fine-tuning
the robot to the specific competition as general
systems are already in place.

In spite of the challenges brought by a
pandemic, MuddSub used this time to expand
Alfie’s capability and optimize for minimum-
prior autonomy. This was driven by two factors.
First is the expansion of our team. In the
2019 RoboSub on-site competition, our organi-
zation consisted of a mere 6 people. This small
member-count served effectively to get a basic
robot in the water through fast iteration and
deployment. The sacrifice was in the breadth
of the tasks - our organization only attempted
the gate and buoy tasks. Our organization now
consists of around 50 members, each with
a variety of expertise and background. With
more members on the team, MuddSub orga-
nized subteams of members each independently
researching and prototyping for a single task.
This allowed MuddSub to exhaust the RoboSub
spectrum, meaning every obstacle in the com-
petition was addressed. Second, due to COVID-
19 restrictions, robots were not judged based
on their performance in a testing environment,
but rather evaluated from an developmental
standpoint.

The rest of this article is organized as fol-
lows. In the design creativity section, we doc-
ument the design decisions of our individual
subteams. In the experimental results section,
we document particularly compelling results
with respect to relevant evaluation metrics.

II. DESIGN CREATIVITY

This section describes the motivations and
decisions of MuddSub’s subteams in develop-
ing specific systems to solve various RoboSub
obstacles.

A. Computer Vision

In the RoboSub competition, it is crucial that
the robot is able to sense the world around
it. One of the most reliable ways of doing
so is with cameras. In the past decade, neural
models have become the state of the art for
computer vision systems. For such models,
model performance is commensurate with the
quality and number of the training data.

MuddSub created a system for remote image
labeling, which allows the team to quickly
and accurately get bounding boxes for our
computer vision neural networks to train on.
Test images were divided into batches and
assigned to two people each. A web server
and a connected desktop app distributed those
images to members of the MuddSub team to
label remotely. To verify the accuracy of the
labels, the two sets of labels are compared.
If they are not close enough, the image was
sent to a third person to gather evidence on
which label was more desirable. Ultimately,
this system ensured that MuddSub had accurate
data to train neural networks on, and involved
the whole team so labeling could be done more
efficiently.

There are a variety of deep architectures
to localize and classify objects. In order to
determine the best model, the team considered
four different neural architectures – YOLOv3,
MobileNet, U-Net, and SqueezeNet. These ar-
chitectures are chosen because they are single-
shot detectors, which means that localization
and classification are done within a single neu-
ral network. Single-shot detectors favor speed
over accuracy. In the case of Robosub, this
is favorable because external filters such as
SLAM are used to remove noisy predictions
over time.

After comparing these architectures, the
team determined that the best model to use is
a modified version of YOLOv3. Specifically,
the model blends elements of YOLOv3, which
had 100+ residual layers total with three detec-
tion layers, and YOLOv3-tiny, which consisted
of about 20 residual layers and one detec-

MuddSub Page 3 of 16

tion layer. The resultant model is YOLOv3-
medium, which uses about 40 residual layers
and two detection layers. This network design
allows the team to achieve both optimal perfor-
mance and speed.

B. Simultaneous Localization and Mapping

Given the objective of minimum-prior au-
tonomy, the team decided that SLAM was an
optimal solution for robot localization, as it
reduced the need for human heuristics through
generalized environment mapping.

Given that Alfie’s primary perception system
uses cameras, a popular SLAM method to
adopt would be visual SLAM. However, the
team decided against visual SLAM and opted
for FastSLAM to increase reliability, extensi-
bility, performance, and learning opportunities.

Based on prior competition experience, the
over-exposure of the afternoon light and the
water quality degradation often rendered many
images unusable, causing purely visual SLAM
systems to become less reliable. To overcome
this challenge, MuddSub opted for FastSLAM
which depends only on the range and bearing
information of the obstacles and not the partic-
ular sensor. This enables the team to diversify
perception dependencies and increase system
reliability. In addition, the team wants to be
able to easily incorporate more cameras and a
wide variety of sensors, such as sonar and hy-
drophones, in the future. As such, FastSLAM’s
sensor-agonistic feature also supports another
design principle, extensibility.

The biggest reason for choosing FastSLAM
2.0 was performance. Through research, the
team determined that among the more well
known algorithms such as Extended Kalman
filter (EFK) SLAM, FastSLAM is one of the
best performing algorithms. It can match EKF
SLAM with far less computational resources
and with more noise data. Additionally, com-
pared to FastSLAM 1.0, FastSLAM 2.0 can
better maintain multiple hypotheses by main-
taining particle diversity, which will be helpful
in Robosub’s challenging competition course.

Choosing FastSLAM 2.0 also provides a
great learning opportunity. To understand the
algorithm, the team was required to gain an
understanding of many concepts, including
EKF, particle filters, localization, and mapping.
Moreover, FastSLAM 2.0 is an exciting im-
plementation challenge: in the authors’ own
words, “FastSLAM 2.0’s main disadvantage is
that it is more difficult to implement” (Monte-
merlo and Thrun 63). Since there are not any
existing implementations, the team was driven
to learn through experimentation.

C. Navigation

Navigation is implemented via breaking high
level commands into smaller setpoint goals.
Through mapping obstacle commands to point
locations in SLAM’s map, Alfie 2.0 is able
to determine the paths of multiple goals and
execute a predefined motion style: splines or
sinusoidal. Harmonic motion was added to in-
crease SLAM’s known probability of an obsta-
cle’s location through changes in the robot’s
orientation and camera view angle.

The first iteration of the navigation system
used Rapidly-Exploring Random Trees (RRT).
The model used randomly generated nodes
from the plant state to the obstacle’s setpoint.
Each segment of RRT’s trajectory is then de-
termined through a customized method that
generates either an additional randomized node
or the shortest distance between the current
point and end goal.

The second iteration used A* , implemented
in three dimensions, as it performed better
on the map given by the SLAM. A* uses a
heuristic function on a grid of nodes to find the
shortest path to the end pose. This algorithm
is optimized to deal with multiple start states
and changes in the obstacle map as informa-
tion is updated. However, as SLAM also gives
navigation covariances for each of the given
obstacles, this algorithm can be improved by
adding a level of randomness to incorporate
these probabilities and add portions of RRT.

MuddSub Page 4 of 16

D. Controls

The purpose of Controls is to take in a
trajectory from navigation, and compute the
optimal thruster forces to follow that trajectory.
This goal is further broken into the subgoals
of computing optimal wrench vectors and then
breaking down those wrench vectors into the
optimal combination of thruster forces. Alfie is
overactuated; this means that any given wrench
vector can be produced with only six of the
eight thrusters. With this characteristic in mind,
the thruster allocation is designed to minimize
strain on any individual thruster and to cope
with potential thruster failure, thereby enhanc-
ing reliability.

The first control algorithm used
to calculate wrench vectors was a
proportional–integral–derivative controller
(PID). The team used one PID controller for
each of surge, sway, heave, roll, pitch, and
yaw. These controllers calculated the error
between the plant state and target state, and
the derivatives and integrals of those errors.
They then returned a weighted sum of those
three values as the corresponding entry in the
wrench vector. However, this algorithm has
two deficiencies. First, this algorithm cannot
plan for the future trajectory beyond the
target state. Second, the ideal coefficients used
in this algorithm have to be experimentally
determined, and are dependent on the physical
structure of the robot.

In order to overcome these shortcomings, the
team explored the use of a model predictive
controller (MPC). MPC looks at multiple time
steps through the trajectory, and uses a model
of the system to predict how well different sets
of control inputs would follow that trajectory.
The controller then optimizes a set of control
inputs over some small window of time. Once
optimization is complete, the robot takes only
the first step of the optimal set of controls.
At the next time step, this entire process is
repeated. The primary concern with MPC is
the computational intensity of the controller;
however, the team can tune various parameters,

such as the prediction horizon, to reduce that
intensity. Since the system is so complex, an-
other difficulty is the creation of an accurate
model. However, the team finds this trade-off
acceptable, since this model can be mathe-
matically approximated, and does not have to
be experimentally determined every time the
structure of the robot changes in some way.

E. Mission
Mission is Alfie’s planning system, which

takes in perception information and outputs ac-
tion commands. In order to design the system,
the team adopted the philosophy that use cases
inspire design principles and design principles
guide system architecture and implementation.
One main use case is relating to safety and time
constraints: when the diver activates the kill
switch, Alfie must respond immediately, and
to recover without having to be reconnected to
a computer to save competition time. Another
use case is that sometimes, the camera cannot
capture any obstacle, so Alfie should develop a
routine to find the obstacle accordingly. These
two use cases translate into the principle of re-
liability: stop motion from kill switch, recover
from kill switch, and recover from uncertainty
due to lack of perception information. The last
use case the team emphasizes is coding effi-
ciency. During the last in person competition,
the team found itself writing many of the same
routines for different tasks, and modifying mul-
tiple similar areas in our code when a part of
planning heuristics changed. This use case calls
for code modularity and reusability.

With the principle of reliability and modu-
larity in minds, the team adopts a hierarchi-
cal state machine that is based on the ROS
SMACH library. First, this architecture consists
of a kernel layer, which responds to start and
kill switches and their resets. This addresses
reliability by providing an infrastructure for
restarting after the kill switch is activated. Next,
the mission layer outlines a series of tasks,
where each task is represented by a task layer.
Task layer represents the actual task Alfie needs
to perform, such as going through the gate.

MuddSub Page 5 of 16

Fig. 2. An improved schematic of how information flows
between subsystems after scoping.

Each task is decomposed into three compo-
nents: locate obstacles, go to obstacles, and
perform task specific behaviors. In particular,
the first two components are shared across
all tasks, obtaining modularity and reusability.
Finally, each component above is an action
layer, which is a concurrent container with
two states: a state that monitors for the kill
switch signal, and a custom state defined to
perform the said actions. This layer realizes
concurrency that is necessary to stop kill switch
activation, and thereby addresses the principle
of reliability.

F. Integration

With an expansion of robot features, keeping
track of each subsystem and integrating them
become more difficult. For example, SLAM
requires range and bearing measurements to
obstacles as input and relies on the vision
system to provide them. However, before the
coordination between subsystems was estab-
lished, the vision system was only able to
output bounding boxes, which SLAM cannot
use. In addition to some systems expecting in-
compatible inputs, the necessary inputs for each
subsystem were subject to change as imple-
mentation approaches changed during research
and experimentation. To avoid miscommunica-
tions and compatibility issues, the team con-
ducted subsystem reviews to establish inputs

and outputs, designed software communica-
tion channels with specificity, and implemented
graphical user interface (GUI) tools to increase
usability.

Starting from a broad overview of how
information should flow between subsystems,
each subteam was asked to give a list of the
types of expected input and output data. Just
a survey of subsystems was not enough as
many subsystems changed and the gap between
experimental code and integration-ready code
was too wide. Thus, a second series of team-
wide scoping meetings was scheduled to record
updated inputs and outputs (Figure 2) as well as
provide assistance on implementing subsystem
communication.

As Alfie is based on ROS, the bulk of the
communication between subsystems is done
through ROS topics, which are channels that
can be published to and subscribed to, and ROS
messages, the data sent through those channels.

Following the established inputs and outputs,
the team planned the flow of information to be
specific and efficient using custom messages
and topics. The team splits subsystem outputs
so that the clients of a message do not need
to be familiar with the system that provides
it. For example, instead of having a single
“depth_sensor” topic that contains all of its
output, the team uses “depth_sensor/depth” and
“depth_sensor/pressure”, making it clear that
the depth sensor provides pressure information
in addition to the depth measurement. Another
way to improve code readability and reusability
is by strategically publishing processed data.
Publishing to ROS topics is very computation-
ally light and data transfer only occurs when
there are subscribers to the topic, making it a
better option to publish some of the outputs
in a preprocessed format. Therefore, as long
as the processed data is useful to at least one
subsystem, publishing helpful data is at least as
efficient as having each subscribing subsystem
process the data internally.

MuddSub Page 6 of 16

G. Hydrophones
The main goal for hydrophones is to locate

the pinger and use this information to estimate
the relative position of the robot. For context
within the competition, the pingers in the pool
send out pulses of sound between 25kHz to
40kHz and if implemented and denoised cor-
rectly, the hydrophones can help derive the
position of the robot with respect to the pinger
source.

The analog signal goes through a two stage
front-end including a charge amplifier and a
multiple feedback band pass design. The team
implemented a charge mode amplifier as our
first stage in order to produce an output voltage
that is proportional to the charge generated
by our hydrophones. Charge amplifiers are
useful to amplify signals with piezoelectric
transducers, such as hydrophones, as charge
amplifiers minimize the effects of interconnect
capacitance.

Additionally, for our second stage, the team
decided to use a multiple feedback band pass
filter for 25kHz to 40 kHz instead of other
common architectures like Sallen-Key due to
its ability to achieve a high quality factor
and high noise gain. Since the ADC expects
a differential input, the second stage addi-
tionally converts the single-ended signal to a
differential signal. In addition to the analog
filtering, some other important features in our
hydrophone board include:

Choosing an ADC, specifically the
ADAR7251, that has two programmable
gain stages to allow the team to adjust the
amplification depending on the distance from
the pinger. The team also included a subcircuit
for a battery voltage monitor by using a
voltage divider and a simple buffer with an
RC anti-aliasing filter. And lastly, the four
channels are sampled synchronously.

H. Motherboard
There are many communication ports be-

tween the computer and peripheral devices. In
order to organize communication lines, regu-
late power, and provide additional I/O ports,

Fig. 3. Hydrophone board layout.

the team was tasked with designing a moth-
erboard. The motherboard requires a steady
DC power supply; the power will be provided
by the power distribution system and PCB,
as discussed in the Power Distribution sec-
tion. This motherboard’s functionality includes
PWM/UART/I²C communication for sensors, a
battery voltage monitor for the two robot bat-
teries—Turnigy High Capacity 10000mAh 4S
12C Lipo Packs, thruster kill signals, and com-
munication to the Teensy 4.1 microcontroller
and the computer, a Jetson AGX Xavier. The
motherboard was designed in Altium Designer
to address space constraints and simplify cable
connections.

The current sensors include Blue Robotic’s
Bar02 Ultra High Resolution Depth/Pressure
sensor, VN-100 IMU, Waterlink’s DVL 450,
and a custom hydrophone array (see Subsec-
tion 3.8: Hydrophones). These sensors require
different types of connections from I²C, Logic-
Level 3.3V, analog, UART for the Doppler Ve-
locity Log (DVL), and PWM signals for LEDs,
servos, and Blue Robotics ESC and T200
thrusters. One of the main reasons the Teensy
was chosen as the motherboard microcontroller
was due to its expansive and diverse set of
communication I/O ports compared to other
microcontroller platforms, such as Arduino. In
addition, the Teensy has a smaller footprint, is
easy to connect to the Jetson through USB, and

MuddSub Page 7 of 16

Fig. 4. Render of motherboard PCB.

has great CPU performance due to the ARM
Cortex-M7. There are five main subcircuits
within the motherboard: the PWM isolation,
I²C level shifters, battery monitor, and circuits
for the kill and start switch. One of the central
features of the motherboard is a digital isolation
line that separates the connections between
the computer and the thrusters. Specifically,
optoisolators were used in order to eliminate
potential noise from ground loops between the
analog and digital signals. In order to prevent
the electromagnetic interference generated by
high frequency PWM signals from interfering
with other digital signals, a digital optoisolator
is used before connecting to the Teensy. The
thruster battery monitor first uses a voltage
divider to step down the battery voltage to
around 2.5V before going through a low-pass
filter in order to be in the correct voltage range
for the ADC while filtering out potential high-
frequency noise. Then a digital isolator is used,
outputting a I²C signal for the Teensy. The third
main subcircuit is the I²C level shifter, which
provides 3.3V and 5V ports for both power
sides of the isolation line for the many sensors
that operate using I²C serial communication.
The motherboard includes additional I²C ports
to account for additional sensors, and to cre-
ate a more modular and robust system. The
kill switch is connected to the HDC60D120
Solid State Relay as further examined in the

Subsection 3.10: Power Distribution section,
and the current is passed through a N-channel
MOSFET. A digital isolator is used as the relay
can potentially cause voltage spikes which can
disrupt the kill switch signal before passing into
the Teensy. The start switch simply consists
of current limiting resistors with an indicator
LED.

I. Power Distribution
The team’s power distribution system con-

sists of a high-current physical subunit and a
low-current PCB subunit. The physical subunit
is responsible solely for supplying power to
the thrusters, whereas the board subunit is
responsible for powering the computer, sensors,
and other electronic components.

The mechanical component of the system
consists of a large solid-state relay that ac-
tivates and deactivates the robot thrusters in
response to the kill switch. Power is then
routed via thick copper bus bars through a
bank of eight separate fuses. This circuit is also
constructed to protect the ESCs from damage
in the case that a motor is caught or mal-
functions, drawing excess current. Although
it would be simpler to use a single fuse for
current protection, as the team has done in the
past, having separate fuses for each thruster
allows the robot to continue functioning on its
remaining thrusters even after blowing a fuse.
Using glass fuses allows for easy detection of
blown fuses, and having an easy-to-access fuse
and connector bank allows the team to quickly
swap fuses and/or ESCs when necessary.

The printed circuit board component of the
subsystem is tasked with accepting battery
power and level shifting the supply voltage
down to power the computers and sensors,
specifically to 3.3V, 5V, 9V, and 12V. This
is especially important because the variety of
sensors and electronic components within the
robot run relatively standard, but different volt-
ages. This requires a variety of level shifters
and additional wires throughout the robot un-
less voltages are regulated at the source. There-
fore, the team determined that a circuit board

MuddSub Page 8 of 16

should be constructed to level shift the battery
voltage down to appropriate levels and provide
a bank of power ports such that voltage regu-
lation is minimized elsewhere in the electrical
system. The system does so by using switching
voltage regulators, which were chosen for their
significantly better efficiency at medium-low
current draws. The array of switching voltage
regulator circuits is routed to a bank of con-
nectors so that components requiring different
supply voltages can be powered directly from
the power distribution board, and components
can be added and replaced with ease. The
subcircuits for level shifting to each voltage
are rated for 8 amps to allow ample margins
for potential inrush current spikes.

J. Torpedoes
Torpedoes worked to launch a maximum

sized 2” by 2” by 6” torpedo through a 5 inch
hole from three feet way. Initially, the torpedo
subteam worked on a self motorized torpedo
in order to avoid slight kickback on the robot.
However, after testing, complications arose due
to difficulties waterproofing the seal between
the driveshaft and the torpedo body. Due to this
shortcoming, the team decided to develop two
additional prototypes: flywheel and spring.

The flywheel design used two wheels that
would spin using a waterproof motor and pro-
pel the torpedo using friction. This allowed
the torpedo body to be smaller and more
hydrodynamic. The spring design included a
compressed spring and tube. This design had
similar benefits to the flywheel, the size of
the body could be decreased due to a lack
of onboard electronics. After completing rough
prototypes of all three designs, they were eval-
uated using the same criteria.

The main criteria was consistency, accuracy,
and ease of use. Applying these criteria, it
was clear that the motorized torpedo was not a
viable option. Between the flywheel and spring
design, the spring prototype was the better
option. It was the most consistent, accurate,
easy to fire and simple. Thus the team decided
to focus on the spring design.

Fig. 5. Sliced view of torpedo subsystem

Our main goal was to perfect the whole
spring mechanism. Hexagonal holes were
added to prevent negative pressure. It was
found that if there were no holes in the tube,
a negative pressure would exist behind the
torpedo and it would fail to launch. Besides the
spring, all components were rapidly prototyped
through a 3D printer. Different torpedo bodies
were tested to find out which would be the most
hydrodynamic. Torpedos with a dull nose and
fins flush to the body provided the best results.

K. Gripper
The gripper system was a new addition to

Alfie 2.0 this past year, expanding on both
functionality and ability to interact with the
RoboSub course. The goal of the gripper was
to pick up and drop game pieces and to interact
with lever handles on the course.

The first design iteration was an arm with
two actuation joints. The arm could be actuated
relative to the belly pan and a finger on a
hand could be actuated to grasp game pieces.
This first prototype was a proof of concept for
aspects of the design such as surgical tubing for
maintaining a closed position when unpowered.

The second design iteration had many mod-
ifications. The arm and hand were made more
compact, reducing the gripper’s size and impact
on the robot’s movement during actuation. In
addition, this design included a sensor to detect
game pieces within the gripper. The second
gripper iteration also included a second finger,
allowing it to open wider when grabbing a
game piece. Due to the variety of possible
objects that the gripper might need to interact
with, this iteration was designed with modular
fingers.

MuddSub Page 9 of 16

Fig. 6. Example Modified-YOLOv3 Predictions.

This improves the gripper’s likelihood of a
successful pick up since there is more area over
which it can pick up a game piece. Lastly, the
second design also included an electromagnet
locking mechanism to hold the gripper against
the belly pan when not in use.

III. EXPERIMENTAL RESULTS

This section documents the experimental de-
sign and performance of several subsystems.

A. Computer Vision

To train the networks, the team used the
previous competition images and then used
the labeling software to mark bounding boxes
and categorize objects. The initial results from
training on this dataset were less than satisfac-
tory. As a result, the team focused on

image pre-processing and data augmentation.
The team implemented data augmentation tech-
niques including cutout, cut-mix, flips, rota-
tions, and mosaics, mixing and matching to
train each network. Generating this augmented
data during training, while computationally ex-
pensive, allowed the team to constantly be
feeding the network novel images to train on,
resulting in little to no overfitting of the models
even when running for thousands of epochs.

The team analyzed the performance of neu-
ral networks using a wide variety of metrics,
including classification accuracy — both on
average and broken down by class — detection

Fig. 7. FastSLAM path estimation on test datasets.

accuracy, detection precision. The team mostly
prioritized detection precision, since erroneous
detections can mean the robot will make unfa-
vorable decisions.

The final model has around 60% precision
and 85% class accuracy, but during the best
training session, the team achieved 70% preci-
sion and 90% class accuracy. This is below the
90% precision and 95% class accuracy that the
team hopes for, so the team will continue to
experiment with the YOLOv3 architecture.

B. SLAM

Since the pandemic limited the team’s ability
to work with the robot, the primary methods of
testing were through existing datasets and sim-
ulations. The team used the multi-robot coop-
erative localization and mapping (MR.CLAM)
dataset, published by the University of Toronto
Institute for Aerospace Studies. This consists
of sets of bearing and range measurements,
as well as velocity commands for the robot,
which ware ideal for FastSLAM. The team also
developed a simulator with similar data, which
has the additional advantage of demonstrating
how a robot will respond using the map SLAM
produces. Figure 6 shows an example simula-
tion, where red is the estimated path that fast
slam calculates, and blue is the actual path
that robot takes using the map fast slam gener-
ates. In this simulation, the algorithm initializes
landmarks noisily, and the robot is tasked to

MuddSub Page 10 of 16

move toward the landmark until it hits a close-
enough zone. As shown in the diagrams, the
robot had reached the landmarked area using
the map generated by SLAM. In addition, the
trajectory slam generates closely matches the
real trajectory. Moreover, during the simula-
tion, the landmark poses are corrected as the
robot moves toward that region. This gives the
team the confidence that this algorithm will
perform well in real competition.

C. Navigation

We considered four different heuristics
for the A* pathfinding algorithm: Euclidean,
Chebyshev, Octile, and Manhattan. These
methods are evaluated based on the accuracy
and efficiency. Accuracy of each function was
calculated by comparing the length of the
path’s output compared to the distance calcu-
lated by an exhaustive search algorithm. Effi-
ciency is determined by comparing the number
of visited nodes between the algorithms.

Both Euclidean and Chebyshev obtained the
shortest path, determined by exhaustive search,
100% of time. Octile Distance and Manhattan
Distance produced paths that were, on aver-
age, 0.58% and 2.50% longer respectively. In
terms of efficiency, compared to Euclidean Dis-
tance, Chebyshev Distance and Octile Distance
230.75% and 13.75% worse while Manhattan
Distance used 64.75% less amount of cells.
As such, the team decided to use Manhattan
Distance as it has an extremely high efficiency
rate and a relatively small accuracy error.

D. Torpedoes

There were two rounds of tests for the tor-
pedo design. The first round was in COMSOL,
a fluid dynamics simulator. After parameters
such as drag coefficient were tuned, the second
round of tests were underwater.

This suite of tests revealed two things. First,
the speed of the motorized torpedoes were
slower than anticipated. Second, both the fly-
wheel and spring designs launched the torpe-
does at higher velocities, and travelled farther

Fig. 8. Torpedo Launch Mechanism FEA Analysis

and straighter than the motorized torpedo. Fi-
nally, some of the torpedo bodies were reveled
to not be waterproof, which can be destructive
to the interior electronics. The team ended up
choosing a spring launching mechanism.

After deciding on the final torpedo body
and launching mechanism, the team conducted
more fine-tuned tests. In addition, with the new
spring release tube, the team ran SolidWorks
Simulation on it to confirm that it would not
compromise due to the force from the spring.
This was confirmed through the simulation
because there was minimal displacement after
the spring force was applied to the back of
the tube. This aligned with the tangible re-
sults, as there were reports that the 3D printed
tubes were not noticeably deforming during the
launches. Testing will continue with regard to
the three release mechanism designs, but the
testing methods should remain the same.

IV. ACKNOWLEDGEMENTS

MuddSub would like to thank all the indi-
viduals who contributed to the continued de-
velopment of Alfie. We would like to thank
Harvey Mudd College’s Shanahan Fund, which
served as our primary source of money. We
would also like to thank Oliver Kwan who
funded MuddSub for the entire summer. Last
but not least, we would like to thank our
advisor Zachary Dodds.

V. REFERENCES

Howard, Andrew G. , Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Weijun

MuddSub Page 11 of 16

Wang, TobiasWeyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient
convolutional neural net-works for mobile
vision applications. 2017.

Iandola F.N., Han S., Moskewicz M.W.,
Ashraf K., Dally W.J., Keutzer K. SqueezeNet:
AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size.

Leung K Y K, Halpern Y, Barfoot T
D, and Liu H H T. “The UTIAS Multi-
Robot Cooperative Localization and Mapping
Dataset”. International Journal of Robotics
Research, 30(8):969–974, July 2011.

Montemerlo, Michael, and Sebastian
Thrun. Fastslam: a Scalable Method for
the Simultaneous Localization and Mapping
Problem in Robotics. Springer, 2010.

Redmon, J. and Farhadi, A. (2018).
YOLOv3: An Incremental Improvement.

Ronneberger, Olaf; Fischer, Philipp; Brox,
Thomas (2015). "U-Net: Convolutional Net-
works for Biomedical Image Segmentation".

MuddSub Page 12 of 16

APPENDIX A: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost(if new)
Buoyancy Control Dive Weights
Frame In-house machined
Waterproof Housing In-house machined
Waterproof Connectors
Thrusters Blue Robotics T100 8x$119
Motor Control Blue Robotics BasicESC 4x$27
High Level Control
Propeller
Battery HobbyKing Turnigy 4S, 10 AH 2x$99
Converter
Regulator
CPU NVIDIA Jetson AGX Xavier 30W, 32TOPS $650
Internal Comm Network
External Comm Interface
Programming Language 1 Standard C++ Foundation C++17 Free
Programming Language 2 Python Software Foundation Python 3 Free
Compass
Inertial Measurement Unit VectorNav VN-100T Donated
Doppler Velocity Log Waterlinked DVL A50 0.1mm/s Resolution $5200
Camera(s) FLIR Chameleon 3 1.3MP 2x$310
Hydrophones Teledyne TC-4013 4x$1443
Manipulator
Algorithm: Vision Conv Net
Algorithm: Acoustics Unitary ESPRIT
Algorithm: Localization and Mapping FastSlam 2.0
Algorithm: Autonomy state machine
Open source software Canonical Ltd. Ubuntu 20.04 Free
Team size 48 team members
HW/SW expertise ratio 1:1
Testing time: simulation 0
Testing time: in-water 15 hrs

MuddSub Page 13 of 16

APPENDIX B: ADDITIONAL FIGURES

Alfie’s Mission block diagram.

Alfie’s gripper mechanism.

Torpedo body design.

MuddSub Page 14 of 16

Torpedo Launch Stress Analysis

Results of various navigation models.

MuddSub Page 15 of 16

Schematic of motherboard.

Hydrophones information pipeline

MuddSub Page 16 of 16

Underside of Alfie with DVL, Gripper, Torpedoes, Hydrophones.

