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Abstract—SeaWolf VIII (SW8) is a returning design from the
2020 RoboSub competition developed by the North Carolina
State University Underwater Robotics Club. Building off of the
results from RoboSub 2020, emphasis was placed on upgrading
the electrical system and developing our software and acoustics
systems. Initial efforts centered on ensuring the robot would be
functional for pool testing and competition as well as imple-
menting necessary changes to ensure electrical and mechanical
stability. Once upgrades and new designs were implemented, the
team shifted focus to developing our signal sensing peripherals,
new cameras, computer vision code, hydrophones, and acoustics
echo location code through pool testing. Significant time and
work was also dedicated to ensuring the robot could move
autonomously within a pool.

I. COMPETITION STRATEGY

In preparation for the 2021 RoboSub competition, our
team maintained an efficient work flow while still following
COVID-19 regulations and prioritizing the health of the team.
With a young team and a history of overcomplicated design,
we sought to create a platform on which we could approach
each competition task in turn. Starting from the ground up, the
team considered past approaches to competition and chose a
more conservative approach.

The team sought to complete four main competition tasks,
focusing efforts on scoring the maximum points for each:

1) Moving through Gate
2) Detecting Path
3) Touching Buoys
4) Octagon
Gate was the highest priority task, as it must be completed

before moving on to the rest of the course and contained plenty
of opportunity for extra points beyond pass through. Path and
Buoys follow Gate, require vision and leads to other parts of
the course, so naturally these were the next focuses. Camera
mounts were embedded into our hull design and installed onto
the robot in order to ensure that the Gate and Path could be
visually identified. A straightforward and durable electronics
system was chosen over a custom design. This system allowed
basic operations such as communications, power and thruster
switching and power management to be developed rapidly yet
reliably, allowing other subteams to focus on implementing
their designs for competition tasks.

Aside from modular design, the main mechanical effort
was focused on creating a robust movement system. One of
the key design decisions made in service of this was our 8-
thruster configuration. This provides a more stable attitude and
strafe control, allowing for finer control of the robot by the
onboard computer. This design provides improved capabilities
to handle movement based tasks such as Gate, and better
position the robot to handle other tasks. Because such a focus
was placed on this design, more complex developments such
as Torpedoes and Bins were not planned.

Our software architecture was specifically designed to be
able to reuse code as much as possible which was particularly
helpful in the set of tasks we chose to take on. Gate, Path
and Buoys all require visual identification, and we can utilize
similar software to detect all of these targets, and use our
navigation system to interact with these objects. Additionally,
the software architecture was expanded to include nodes that
ran computer vision algorithms to find the gate within the
images provided by our new cameras.

In contrast to the first three tasks, Octagon posed unique
design challenges but held very high point value. To take
on this task, the acoustics team designed a new specialized
subsystem for the robot. This subsystem needed to capture
sound from the environment, filter out noise, determine the
presence or pings, and determine the location of the pinger.
Hardware and software systems needed development to meet
these objectives. Hardware band-pass signal filtering was de-
veloped to remove any noise such that we could determine
the presence of pings. Acoustics software was designed such
that filtered signals could be captured using an on-board
oscilloscope and then analyzed to determine the exact location
of the pinger in the octagon.

II. DESIGN CREATIVITY

To execute our competition strategy, the team needed to
tackle a series of technical design challenges. On top of
this, we had to contend with a different set of unfamiliar
issues brought about due to the COVID-19 pandemic. We
were committed to the idea that any solution we designed
should be robust, as SW8 is a new platform that must remain
operational for several years to come. Each subteam had



unique challenges, but a common thread is that each solution
was creative in their approach while still relying on tried and
true engineering principles.

A. Mechanical

The focus for the mechanical design of SW8 was on creating
a robust platform that would allow new systems to be tested
and implemented in the future, without having to rework the
basic structure of the robot. This was achieved by building a
durable frame around the concept of modularity. With SW8’s
modular frame the robot can easily be outfitted with any new
or updated peripherals it needs to perform each year’s shifting
competition goals.

The physical structure of SW8 consists of powder coated,
aluminum frame sections held together by 3D printed joints
and stainless fasteners. The aluminum frame is an improve-
ment on Seawolf VII’s (SW7) design, as the acrylic frame
of SW7 was fragile and led to many mechanical issues. In
comparison, SW8’s design provides structural integrity and
prevents external forces from acting on the electronics hull
where possible. We have also updated our thruster configura-
tion to improve performance. The octagonal shape of SW8
facilitates an 8-thruster configuration which provides more
stable attitude and strafe control, allowing for finer control
of the robot by the onboard computer.

Fig. 1. Solidwords render of SW8

Fig. 2. Picture of SW8

Due to the remote work enforced COVID-19, the mechan-
ical team made the transition from our typical design method
of iterating using rapid prototyping techniques to a more
analytical approach. This approach utilized more software
simulation to finalize a design before we attempted to have it
manufactured. Some of these new methods included structural
and fluid simulations in SolidWorks, as well as mathematical
optimization utilizing Matlab.

Members of our subteam developed an application that
runs in Matlab used to simulate the torpedo task by taking
different variables that can be obtained from CAD files in
SolidWorks. Using this app, we were able to spur new member
involvement by hosting our own miniature design competition.
New members created their own torpedo design, using the
app to simulate their results. We then 3D printed all of the
new torpedoes and launched them in a pool to test how the
simulated performance compared to real world testing. The
best design is the one we will be using for the competition
until another rises to take its place.

B. Software

To ensure our software system was able to complete ar-
bitrary tasks whilst utilizing our hardware and open-source
tools, we integrated the Robot Operating System (ROS) into
our architecture [1]. The software architecture of SW8 is struc-
tured such that it enables communication between peripheral
interfaces, controllers, sensing, and the robot’s mission nodes.
The structure of our software system also allows for changes
to our electronic system without significant changes to our
software.

Fig. 3. SW8’s Software Architecture

Our inability to perform underwater tests due to the restric-
tions of the pandemic forced us to come up with new creative
solutions to continue writing new software. The biggest of
these improvements was the development of a simulation
environment that allows code to be tested without the real
robot. The simulation environment has a version of SW8
which is able to move in the same ways as the physical
robot and has the same collection of sensors. Importantly, this
simulated version of the robot interfaces with the software in
the same way that the real robot does. This is critical to ensure
that software does not have to be modified in order to work
in simulation.



One issue we had to address while making our simulation
system was the level of detail needed to perform testing. In
some instances, we wanted a more fine grain resolution, while
in other situations extra detail was unnecessary. For example,
the code which handles the movement of the robot relies on
our flight controller, a Pixhawk. We could either simulate the
Pixhawk and the MAVLink connection between the Pixhawk
and our main computer, or we could have chosen to assume
the Pixhawk will always output our desired behavior. Our team
decided to tackle this issue by allowing users to select the
level of detail they want the simulation to use. If we were
testing movement aspects of the software, we would enable the
Pixhawk simulation, but if we were testing unrelated parts of
the robot we can disable this to make the simulation experience
smoother and less computationally intensive.

Another issue our team faced was that not all our members
had the ability to run the demanding simulation software
we had developed. To solve this problem the team looked
towards a software industry standard that we believed could
be applied to robotics. We implemented a form of continuous
integration (CI) into our software engineering process, which
allowed developers to test their code in a remote simulator. We
utilized Github Actions to seamlessly integrate these simulator
tests into our preexisting version control system. This system
allowed us to run a series of tests each time a commit was
pushed into our Github repository.

The tests themselves were also an engineering challenge.
The simulator software (Gazebo) does not have a standardized
way to create tests [2]. In order to implement our CI system
we had to create a custom plugin for Gazebo that allowed
us to write extensive behavior testing for the robot. These
tests allowed us to visually place goals in a test environment
that helped to track the robots progress in a quantitative way.
This allowed us to easily create a wide variety of tests for
the different RoboSub challenges. Then, when the simulation
was run without any graphical display in the remote server, it
was still possible to see how the robot was doing by tracking
its progress through these placed goals. This also allowed us
to see a nice report of how the test went without having to
watch the entire simulation play out. We found this tool to be
so useful that the team is working on creating a public version
of the tool so other Gazebo users can create similar tests.

Fig. 4. SW8 gate simulation

C. Electrical
The electrical design of SW8 was kept as straightforward

and robust as possible, while still allowing for unique designs

to play a crucial role in the system. To achieve this goal, we
utilized a combination of off-the-shelf components to control
the robot and carry or switch power, as well as in-house
designed custom electronics to manage the flow of current
and switch thrusters.

An example of this principle is the use of a Pixhawk flight
controller in SW8’s system design. The previous design relied
on custom electronics that proved unstable and resulted in
roadblocks for the entire team. By using a Pixhawk, the team
was able to leverage a stable electrical system to develop
software and acoustics systems further than the previous
iteration of Seawolf.

1) Load Balancing Board
2) Opto-Isolator Board
3) Main Electronics Board
These devices tie the rest of the system together, and can

be seen highlighted in yellow within the block-diagram of our
system in Fig 5.

Fig. 5. Electronics system block diagram

The Load Balancing Board is designed to draw current
proportionally from two lithium polymer batteries safely,
discharging both at the same rate. This design has allowed
SW8 to move from one large battery to two smaller batteries
which can be separately housed and fused. If need be, this
design could be expanded to balance more than two batteries.

The Opto-isolator Board solves a unique problem encoun-
tered during the testing phase of initial designs. When low-
side switching thrusters in the killswitch system, a problem
arises wherein the ground connection is kept alive through
the ESC signal ground cables. By optically isolating battery
ground from thruster ground with the custom PCB, SW8 can
be low-side switched using a power MOSFET and gate driver
without the need for a more complicated or expensive high-
side switching setup.

The Main Electronics Board uses an MSP430 Launchpad
to switch thruster power by controlling a low-side MOSFET.
Power to the other electronics, such as the onboard computer
and Pixhawk, is switched by controlling a high-side solid
state relay (SSR). This setup gives command of our entire
electrical system to a programmable control board, which can
be customized and expanded upon as needed. As core parts



of our system are proven over time, the Main Electronics
Board will define how we replace off-the-shelf components
with customized designs.

D. Acoustics

For the most stable and accurate signal filtering, a band pass
filter is used for each channel to ensure all noise is removed.
Active high and low pass filters were built using a combination
of hand built circuits and monolithic integrated circuits (IC’s).
The high pass filter element was completely hand built as we
only need a single cutoff frequency to ensure removal of low
frequency noise. The low pass filter side of the circuit utilizes
an IC that gives us the ability to program the cutoff frequency
and change the frequency response of our system. Having
the ability to change the low-pass cutoff enables us to use
a variety of pinger frequencies in the event some frequencies
work better than others.

It was determined that having a single power supply would
be the most efficient way to run the acoustics system. To avoid
losing half of our signal this meant a new signal needed to
be created “Analog Ground” that would be set to 4.5 volts
and would act as relative 0 for our signals. Since all signals
come in biased at 0 volts, this meant a buffering and biasing
circuit needed to be incorporated such that the signal’s relative
ground would be 4.5 volts.

After biasing and amplifying, the signal is then sent through
an on board oscilloscope to log data. Utilizing an oscilloscope
gives us the ability to quickly and accurately log our signal
data without needing to develop complex software to do it
ourselves. Data can easily be collected and sent directly to a
computer with signal fidelity that would be hard to achieve
without the on board oscilloscope.

After the signals are captured, software algorithms are
used to process the data and determine the location of the
pinger. The Acoustics team utilizes the Python programming
language, as it combines power with ease of use and learning.
Python is powerful enough to perform the necessary com-
putation to determine pinger locations, as there are several
pre-existing packages that have been tried and tested such as
NumPy which make performing the math much more simple
[3].

III. EXPERIMENTAL RESULTS

During the 2020-2021 academic year, the club conducted
a total of six pool tests, with roughly a month between tests.
Each pool test acted as performance evaluation of SW8’s sys-
tems that were developed and tuned throughout the preceding
month. Because we were unable to bring many members to
our pool tests, due to COVID-19 restrictions, we began live
streaming our Pool tests on Twitch. The decision to livestream
our pool tests also increased member involvement over the past
year because remote team members were able to tune in and
interact live with those at the test.

Because major changes to the electrical and software sys-
tems were required during the fall semester, no pool tests
were possible until the spring. During this time, Covid-19

restrictions required strictly virtual meetings and enforced very
limited lab access.

When possible, effort was placed on implementing these
system changes and performing bring-up testing so that SW8
would be pool-test ready come the spring. It was also during
this time that design work was able to be focused over onto
testing. Once spring arrived, the focus then shifted to testing
changes and designs brought in over the fall. We aimed for one
pooltest per month, which would allow us to make meaningful
adjustments or progress between each test but still get in the
water frequently enough to see results and adjust goals if need
be.

A. Mechanical

One aspect tested during some pool tests was the per-
formance of various torpedo designs. The torpedoes are 3D
printed components, which allows for rapid prototyping and
acts as an easy method of comparison between designs.
These designs included variations to factors such as geometry,
material, and print orientation in order to optimize the distance
traveled and minimize the amount of stray from launch. In
addition, a MATLAB script and GUI were developed to
provide theoretical results of torpedo designs before obtaining
actual results from pool tests for comparison.

Fig. 6. Solidworks rendering of torpedo design

Fig. 7. MATLAB GUI for torpedo testing



B. Electrical

The electrical team began testing an upgraded electrical
system, which included changes to the power system, moth-
erboard, and power/thruster switching. Because of the large
amount of changes affecting power, in-depth testing was
performed on the system using an oscilloscope as seen in Fig
8. It was found that, though the drop in voltage due to inrush
current to capacitors downstream was significant, it was not
show-stopping.

Fig. 8. Noise from inrush current

Further testing of this system took place once the robot was
able to reach the water in the spring. A new three-position
power switch to allow on/off action from outside the hull and
a new method of switching thrusters were among the main
goals for our first pool test. To ensure our power and thruster
switching was working properly, the behavior of these systems
was closely monitored for any sign of misbehavior at each pool
test held during the spring.

During one of our latest tests, the killswitch failed to reliably
kill power to thrusters. The robot was software killed and
powered off, and it was later discovered that the MOSFET
used to switch thrusters was internally destroyed. Investigation
into transient voltages into the device showed nothing out of
the ordinary. Physical damage to the device was discovered,
but because the damage was delivered to the device during the
fall and the component had only recently failed, the results
remain inconclusive. A replacement was issued and is being
monitored for any similar internal damages between pool tests.

C. Software

Software systems were tested during every pool test and
many adjustments were made after collecting experimental
results. Before each pool test, the software team would create
a plan of what should be tested in the pool, and then run these
tests in our simulation system. The first major software system
to be tested was our movement control system. One aspect of
this system that benefited from the simulation testing was the
type of input given. Our movement input to the robot consists
of a 2D vector for the desired planar velocity of the robot,
a scalar that gives the true desired depth of the robot and
a quaternion that defines the desired angle of the robot. This

system for controlling movement was not immediately created,
the team rapidly prototyped different control inputs until we
arrived at this solution. This rapid iteration and development
would not have been possible without the extensive use of our
software simulator to see what was most effective in a very
short period of time. When tested in the pool, our final system
worked as desired and was robust for many types of movement
goals.

Unfortunately, while testing the robot’s movement we found
an issue that could not be caught in simulation and needed
real world testing. This involved the communication link
between our thruster control system, the Pixhawk, and our
main onboard computer. These components communicated
using the MAVLink protocol. Even in our more fine grain
software-in-the-loop simulations our configuration of this link
seemed to work. However, when tested in the pool, we found
many configuration issues that were particular to our physical
system. We spent much of our first few pool tests fixing these
configuration issues until we achieved similar performance in
both simulation and practice.

Another system that needed real world testing was our
computer vision software. This year we focused on writing
gate detection code first and foremost. It is difficult to produce
reliable simulated computer vision targets, so the team chose
to rely on pool tests to collect videos which would serve
as training datasets for later testing. We also augmented our
dataset using footage collected at past RoboSub competitions.
Upon running the programs on live targets in a pool, we found
that it was not reliably detecting the gate, and many times was
overwhelmed by the number of reflections in our particular
pool.

Fig. 9. Implementation of computer vision code

This has caused us to go back to the drawing board for
our computer vision code and rethink a new approach to our
algorithms to make them more robust in environments with
problematic reflections.

D. Acoustics

The acoustics team conducted controlled testing of our
filtering circuits to ensure proper amplification occurred with
desired signals and proper attenuation occurred with undesired
signals. In the course of our testing the following bode plot
was obtained, indicating lower cutoff frequency of 6.84 kHz
and a higher cutoff frequency of 36.95 kHz.

These cutoff frequencies encompass a range of pinger fre-
quencies we are allowed to use at competition, indicating our



Fig. 10. Bode plot of filtering circuits

filtering circuit is viable. In addition, for Low Pass Filtering,
an LTC1564 IC is used giving us the ability to adjust the cutoff
frequency so that if 40 kHz is used, it falls within our filtering
band.

The acoustics team also successfully integrated a new Pi-
coTech picoscope to our system. In our work it was necessary
to be able to capture a signal, run it through our filtering
circuits and log the data using the picoscope controlled by
a raspberry pi. Since the raspberry pi must be underwater
with the picoscope and the rest of the acoustics system, it
was necessary to remotely connect to the raspberry pi and run
code from the terminal to capture data. To accomplish this, we
utilized PicoTech’s SDK and drivers and adapted pre-existing
Python scripts such that we could capture data while operating
the raspberry pi headlessly over SSH. We were successfully
able to take a signal, run it through our filtering circuits, and
capture the data with our picoscope using Python scripts, all
while remotely connected to the system via SSH.

This is the first step towards being able to integrate the
acoustics system with the robot as since we have proven
we can capture data, all that is necessary is to perform
the mathematical analysis of the signal and return a pinger
location.
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APPENDIX A
COMPONENET SPECIFICATIONS



Component Vendor Model/Type Specs Cost (if new) Status
Frame Self Custom 0.25 in 6061-alloy alu-

minum and 3D printed
PLA parts

Integrated

Waterproof Housing Self Custom Custom aluminum end
caps with double o-
ring seals

Integrated

Waterproof
Connectors

Fischer Connectors 103, 104, 105 series IP68 Integrated

Cable Penetrators Blue Robotics M10 950 meter depth rating $5.00 Integrated
Flight Controller mRo Pixhawk 3-axis gyroscope,

3-axis accelerom-
eter/magnetometer,
3-axis accelerom-
eter/gyroscope,
barometer

Integrated

Battery Turnigy 16000 mAh 12-24 C $246.00 Integrated
Battery Turnigy 5000 mAh 30-40 C $66.00 Purchased
Solid State Relay Crydom DC100D100C 100 A, 32 V $173.00 Integrated
Killswitch MOSFET IXYS IXTN660n04t4 N-Channel, 40 V, 660

A, Chassis Mount
$28.00 Integrated

Regulator EKYLIN K24053.5 Step down converter
regulator 5 V, 5 A

$13.00 Integrated

Pixhawk Power Mod-
ule

Holybro PM02 V3 $18.00 Integrated

CPU NVIDIA Jetson Nano $59.00 Integrated
Internal Communica-
tion Network

UART Integrated

External Communica-
tion Interface

Ethernet Integrated

Programming
Language 1

Python 2.7 & 3.X Integrated

Programming
Language 2

C++ C++11 Integrated

Camera 1 Microsoft Lifecam Integrated
Camera 2 Intel Realsense D435i RGBD $208.00 Purchased
Hydrophones Aquarian Audio H2A Hydrophone Purchased
Algorithms: Vision Opencv [4] 4.2 Integrated
Algorithms: Acoustics Numpy [3] 1.21 Integrated
Algorithms:
Autonomy

ROS [1] Noetic Integrated

Open Source Software Opencv, Python,
Linux, ROS,
PicoTech, Gazebo
[2]

Integrated

Oscilloscope Pico Technology Picoscope 4824 80 MS/s $2,300.00 Purchased


