
Team Simplexity | 1

TEAM SIMPLEXITY 2021 UUV
Ryan Meagher, Tyler Meagher, Alex Battikha, Hudson Kim, Thomas Fernandez

Abstract -- Team Simplexity is a first-year private team
started by Ryan Meagher in San Diego, CA. The team
consists of four middle schoolers and a graduate
student from the ASU Fulton School of Engineering.
We have created a UUV that utilizes cutting edge
software and hardware. Our UUV incorporates the
ModalAI VOXL companion computer combined with
ModalAI’s Flight Core. Two 4K high resolution
cameras are at the heart of our vision processing &
navigation system. The PX4 firmware running on the
Flight Core controls the propulsion system and
interfaces to several offboard sensors. ROS2 runs our
vision processing pipeline on the VOXL allowing
OpenCV to process raw images, and in turn, publish
commands to our navigational system. We have a
propulsion system which utilizes the BLHeli32
firmware on two 4-in-1 ESCs. These are connected to
six Blue Robotics T200 thrusters. We built several
custom test apparatuses to characterize several aspects
of the UUV to ensure we have a solid foundation to
build upon for years to come.

COMPETITION STRATEGY

As a first year team our initial goal was to
build a robot with the capability to reliably
navigate through the gate after the random coin
flip. We planned to perform a style maneuver
before passing through the gate. A significant
amount of engineering work had to be performed
before even these simple tasks could be
achieved. We realized having a strong
understanding of each component in the vehicle
would be key in achieving a successful outcome.
This involved research, prototyping, and testing.
We also sought advice from outside experts. Our
strategy was to look at past teams designs to
understand what had been successful, but look
for areas where we might innovate and gain a
competitive advantage.

By leveraging proven off the shelf components
we could reduce the engineering time it took to
get a functional UUV ready for the competition.
A major portion of our effort was learning about,
and designing, a propulsion system that could

complete our selected missions effectively. We
also wanted to provide a strong foundation to
build upon for future competitions.

One early competition strategy we decided
upon was to design a propulsion system that
could support two complete runs in the twenty
minute time period. This put specific speed
requirements on the design and influenced our
hull, propulsion, and battery design. Doing this
allowed us to double our chances if something
went wrong during our initial run.

Image recognition and underwater navigation
are large parts of the competition requirements to
complete missions successfully. We decided that
using cutting edge image sensors as well as
having the processing power to utilize the high
bit-rate video streams would be an important
strategy. For this we turned to a local drone
manufacturer, ModalAI, who develops cutting
edge hardware and software for aerial drones. At
the heart of their solution is Qualcomm’s high
performance Snapdragon processor with
“Quad-core cpu up to 2.15GHz, a GPU, and 2
DSPs” along with custom hardware acceleration
blocks[1]. This solution provides a world class
imaging processing platform ideally suited for
autonomous vehicles.

Our competition strategy for underwater
navigation was to use multiple IMUs, PNI’s
RM3100, a military grade magnetometer [2],
along with vision localization to navigate
successfully through the different missions.

With our vision system driving our
localization, we determined having three degrees
of freedom in the propulsion system would be
necessary, as well as sufficient, to perform the
missions in this competition. As the robot
approaches the gate, a path marker, or the Make
your Grade buoy, having the ability to make
slight corrections in the horizontal plane without
rotation would allow the camera to better track

Team Simplexity | 2

images. This made image navigation
significantly easier and more reliable.

The final strategy we used for the competition
was to design a UUV that could spin about the Z
axis without movement in its (x,y,z) position.
This would allow greater positional accuracy
after completing the “Coin Flip” task and the
“Style Maneuver” before continuing to the next
task.

DESIGN CREATIVITY

Mechanical and CAD

This year we leveraged an off-the-shelf
enclosure and frame structure from Blue
Robotics to speed the development process.
After working through the mission requirements,
we determined a six thruster propulsion design
would be the best way to meet the 3 DOF motion
requirement as well as the axial spin
requirement. Figure 1 shows the general thruster
placement and propeller rotations.

Figure 1: Thruster orientation and propeller rotation direction

Using this configuration allows the UUV to
move in any horizontal x-y plane direction
(including strafing) without any rotation. It also
allows for rotation about the Z axis with no
movement in the (x,y,z) position.

We used Solidworks to create a 3D CAD
model of our design. Figure 2 is a rendering of
our design.

Figure 2: 3D CAD model of our custom UUV

We utilized a small waterproof cylindrical
enclosure from Blue Robotics with a 100 mm
diameter x 285 mm length with a half dome
attached to one end of the enclosure that extends
73.5 mm at its apex. Two pressed fit o-rings
make a watertight seal with the cylinder. To
maximize the space that was available for our
electronics, we prototyped several methods of
mounting our electronics using 3D printed parts.
This was an iterative process throughout the
season that culminated with a design that was
modular and offered solid usability. Figure 3 is
an exploded view of that design.

Figure 3: Exploded view of our custom 3D printed enclosure mounting system

To create the foundation of our enclosure we
designed a symmetrical cylindrical piece that ran
the length of the enclosure. This cylindrical piece
had slots in it that were used to slide flat panels
with hardware components attached to both sides
of the panel. In order for this to work we had to
optimally position our hardware for ease of use
when plugging in ethernet, power, or other
connectors.

Team Simplexity | 3

This took several iterations but we ended with
a design that met all the requirements. This
included ease of assembly and disassembly, and
allowing for the plug and play mentality. We
still have to do thermal analysis to ensure our
cooling fan is sufficient to keep the temperatures
near the plastic parts in a range where they will
not deform. We also need to measure how
mechanical vibrations caused by the fan will
affect our IMU measurements.

The slots in the cylindrical piece were also
used as the base for our camera mount. We
designed the camera mount in such a way that
the camera points in a forward direction perfectly
centered with regards to the enclosure. This
allowed for the positioning of our forward-facing
high resolution camera to be only 1 mm away
from the apex of the half dome. In doing this we
could avoid problems related to the curvature of
the dome with respect to camera orientation so as
to avoid the issue where a “flat object normal to
the optical axis cannot be brought properly into
focus on a flat image plane”[6].

Doing this increased the quality of the raw
images being fed into our vision processing
pipeline. In addition to this, the camera mount
was designed in such a way that a second high
resolution camera could be pointed downward on
the same y-axis as our forward facing camera.
Figure 4 is a picture of our assembled electronics
enclosure.

Figure 4: Electronics in custom 3D printed enclosure

An important feature of any waterproof
enclosure is getting electrical wires through the
enclosure without compromising the integrity of
the watertight seal. Our feedthroughs include the

six, three phase wires to our thrusters, a depth
sensor, two battery connectors, and ethernet
cable for communication with a ground station
during testing. To save on cost we built several
of our own custom feedthroughs. This included
two battery power feedthroughs, and an ethernet
feedthrough for the tether.

To accomplish this we used hollow aluminum
o-ring feedthroughs from Blue Robotics. We
then created a barrier in any wire passing
through that feedthrough with a solid solder
joint. Then followed by an epoxy potting of the
wire in the feedthrough. This ensured that a nick
in the shielding of the wire would not create a
path for water to travel into our enclosure. We
used a vacuum tester to verify our feedthroughs
were watertight. Figure 5 is a picture of the
process of making a homemade feedthrough.

Figure 5: Custom feedthroughs

Electronics
Figure 6 is a wiring diagram of our

electronics.

Team Simplexity | 4

Figure 6: UUV wiring diagram

At the heart of our electronics is ModalAI’s
VOXL platform. This is a high performance
companion computer, described earlier, that is in
control of the autonomous operation of the UUV.
It communicates with the ground station over a
1GBit ethernet link, when tethered, through a
USB to ethernet adapter. It interfaces to two 4K,
30 fps, high resolution cameras over high-speed
MIPI interfaces for image processing and
localization. It also interfaces with the Flight
Core over two 1Mbps RS-232 interfaces. The
VOXL is powered by an offboard 5V power
regulator that is connected to the 16Ah, 4S LiPo
battery. A fan is used to cool the VOXL’s
Snapdragon CPU.

The ModalAI Flight Core has a
STMicroelectronics “high-performance Arm
Cortex-M7 32-bit RISC core operating at up to
216 MHz frequency” [2]. This MPU runs the
PX4 firmware and interfaces to the two 4-in-1
ESC, the MS5837 depth sensor, 3 IMUs, PNI’s
RM3100 Magnetometer, and the safety switch.
The Furling32 4-in-1 ESC controls up to four
Blue Robotics T200 thrusters. The ESC supports
45 amps of current on each channel at up to 20V.
Software

Figure 7 is a diagram of the different software
running on our UUV

Figure 7: UUV software diagram

The software is divided over several different
processors. The VOXL, the Flight Core, and the
ESC all have independent software stacks
running on them. In addition, the VOXL runs
multiple software stacks on its multiple ARM
cores, and independent firmware on its two
DSPs. The following sections describe these in
more detail.

The microprocessor on this ESC runs the
BLHeli32 firmware. This firmware allows
setting the rotation of the motors, supports
bidirectional operation, as well as many other
parameters. The maximum update rate of the
motor speed is also controlled by the firmware’s
communication protocol. The Flight Core
communicates with the ESC over a 1 wire
interface per thruster. This ESC supports the
DSHOT protocol, a digital protocol, and unlike
the traditional PWM protocol, allows us to query
telemetry data from the ESC (like temperature,
voltage, current and RPMs). The update rate of
the ESC determines the maximum frequency of
any control loop used in the propulsion system.
Anything faster than this frequency will have no
effect. We are still experimenting to determine
the appropriate update rate for our propulsion
system.

The Flight Core runs the PX4 firmware. The
PX4 firmware is an open source professional
drone autopilot software project. In order to
support our UUV, we needed to customize the
PX4 firmware. This included creating custom
airframe and mixer files to deal with the unique
propulsion system on our vehicle. We also made
a custom attitude module to independently
control our vehicle based on the sensor data it

Team Simplexity | 5

receives. A large part of this attitude control
came from creating an accurate MS5837 driver
and utilizing the compass readings from the PNI
RM3100.

The PX4 firmware with custom modifications
was flashed onto the ModalAI Flight Core. The
Flight Core runs the PX4 firmware on top of the
nuttX RTOS. The drivers in the PX4 software
identified sensors connected via SPI, I2C &
UART. The PX4 system uses a uORB
publish/subscribe messaging system. These
published messages were turned into mavlink
messages via the PX4 mavlink module and sent
via UART to our VOXL companion computer.
These mavlink messages are then read and
forwarded to a Docker container, and when
connected via ethernet, they are also forwarded
to the ground station.

The VOXL is running Yocto Jethro Linux. It
provides us the ability to use Docker to run any
supported containers (e.g. any OSes that support
armv8). We choose to create a Focal Docker
image (Ubuntu 20.04). This gave us access to
ROS2, in particular the Foxy distro of ROS2 was
used on the VOXL. Having access to ROS2 gave
us the ability to leverage the px4_ros_com ROS2
package. This was ideal as “the Fast DDS
interface in the PX4 Autopilot can be leveraged
by any applications running and linked in DDS
domains” which is why PX4 developers
recommend switching to ROS2 [7].

To enable communication between our
px4_ros_com package and the PX4 uORB
messaging schema on the Flight Core a bridge
had to be created. This is done by a server/client
interaction via the UART interface between the
micrortps_client on the Flight Core and the
micrortps_agent running in the Ubuntu docker
container on the VOXL.

However, all the serial ports on the VOXL are
internally mapped to the Sensors DSP (sDSP).
This enables low-level and time-sensitive
interaction to sensors and telemetry
communications via the sDSP’s real-time
operating system [8]. While this may free up
CPU cycles on the applications processor it does
not allow applications to talk directly to the

serial ports with reads and writes which is
required by the micrortps ROS2 bridge.

Therefore to enable this bridge we had to
create custom software on Qualcomm’s Hexagon
sDSP as well as services in the linux kernel that
would parse UART messages and forward these
messages via UDP to the micrortps_agent and
vice versa parsing UDP packets from the
micrortps_agent and creating UART messages to
the micrortps_client.

Even though the Docker container is running
on-top of the host OS, we are able to have access
to the host network as well as camera devices
connected to the VOXL. This enabled us to make
use of camera streams in our ROS2 vision
pipeline which is directly used in the nav2 stack
to control our vehicle via the micrortps_bridge.

We created a custom autonomous run process
within ROS2. We trigger this via WiFi to start
the mission. We have not completed this part of
the design, but will be working on it over the
coming weeks.

EXPERIMENTAL RESULTS

To characterize the T200 thrusters running on
our UUV we made a thruster tester apparatus.
This involved transferring the force from the
thruster to an S-type load cell through a pivot
arm. The load cell distance from the pivot point
was equal to that of the thrusters. This resulted in
compression and tension forces applied to the
load cell that were directly proportional to the
force created by our T200 thrusters. In addition,
a high precision 20V, 50 amp, variable DC power
supply was used to characterize the T200’s
power usage at different operating voltages and
PWM values. For the electronics, an ESP32
microcontroller was connected to a HX711 load
cell amplifier to measure the force imparted on
the load cell by the thrusters. The ESP32 was
also connected to a pair of ESCs to control the
speed of the thrusters by changing the PWM
values. A webserver running on the ESP32,
communicated over WiFi to a host computer
which provided the user interface. It also
provided the ability to store the experimental
results. Figure 8 is a picture of the apparatus.

Team Simplexity | 6

Figure 8: Thruster test apparatus

The user interface allowed for running
manually as well as running in an automatic
mode. When in the automatic mode, our
microcontroller would send pwm signals from
1500 to 1900 and 1500 to 1100 microseconds in
steps of +/- 25 microseconds to the ESC.
Measurements were taken at each step and the
mean force, current, and standard deviations
were recorded every 5 seconds. These
measurements were written to a csv file on the
host computer for later analysis. We ran the
experiment over several different voltages. We
processed the results to come up with a
characterization graph of the T200 thrusters as
shown in Figure 9. This is a plot of the mean
force, in pounds of thrust, vs the PWM signal
length, in microseconds. Each graph represents a
different operating voltage.

Figure 9: Blue Robotics T200 thruster characterization

We drew two conclusions from this testing.
First, we determined a 16Ah, 4S, LiPo battery
would provide the required power and energy
storage for our UUV to complete 2 runs in a 20
minute time span. Second, we determined that
our four horizontal thruster configuration would
have greater than 25lbs of static force at max
power. We plan to verify this on our actual UUV
in the coming weeks.

For getting accurate depth measurements we
used TE Connectivity’s MS5837 30 Bar
pressure sensor . The MS5837-30Ba is “a new
generation of high resolution pressure sensors
with I2C bus interface for depth measurement
systems with a water depth resolution of 2
mm”[3]. To test our depth sensor we prototyped
an apparatus that made use of an ESP32, the
MS5837, and a small pressure vessel. This
apparatus allowed us to test the software, and
develop accurate drivers needed for the PX4
firmware. The small pressure vessel allowed
simulating different depths without going in
the water. Figure 10 shows our depth sensor
prototype and our pressure test vessel.

Figure 10: Our depth sensor prototype and pressure testing vessel

We also developed an apparatus and method to
measure our center of gravity (CG) and center of
buoyancy (CB). Using a scale, the internal 3D
compass, and our CAD models we can
experimentally find the CG and CB locations.
Measuring the force and heading from multiple
points both in, and out, of the water allows us to
determine these locations with the help of our
CAD model. Our two PVC ballast tubes and our
battery holder allow for adjustments in the CG
and CB. This is important so we can maintain

Team Simplexity | 7

symmetry of our propulsion system. This task is
ongoing, and we plan to make more
measurements over the coming weeks. Figure 11
are pictures of this testing.

Figure 11: Center of gravity and center of buoyancy testing

We have just started testing our propulsion
system in the water in a tethered configuration.
We plan to continue this work in the coming
weeks as well as get our initial testing on our
vision localization system. In the future we
would like to get a software simulation
environment working for out of the water
navigation testing. Figure 12 is our completed
UUV.

Figure 12: Team Simplexity’s UUV

ACKNOWLEDGEMENTS

We would like to thank our mentors and
parents for all their support. Without their help
and encouragement we would not have been able
to undertake such a major project. We would also
like to thank ModalAI, Blue Robotics, Bulgin,
and Beto at MacArtney for their generous
support.

REFERENCES
1. ModalAI. VOXL.

https://www.modalai.com/pages/voxl
(ModalAI, 2021).

2. PNI. RM3100 Breakout Board.
https://www.pnicorp.com/product/rm310
0-breakout-board/ (PNI 2018).

3. ModalAI. Flight Core - PX4 Drone
Flight Controller.
www.modalai.com/products/flight-core
(ModalAI, 2021).

4. ModalAI.4k High-resolution Sensor for
VOXL (IMX377 M12-style Lens).
www.modalai.com/collections/accessorie
s/products/4k-high-resolution-sensor-for-
voxl-imx377-m12 (ModalAI, 2021).

5. TE Connectivity. MS5837-30BA spec
sheet. (TE Connectivity, 2019).

6. Riedl, Max J. Optical Design
Fundamentals for Infrared Systems. SPIE
Press. pp. 40 (2001).

7. PX4. ROS 2 User Guide (PX4-ROS 2
Bridge).
docs.px4.io/master/en/ros/ros2_comm.ht
ml (ModalAI, 2021)

8. ModalAI. VOXL Serial IO.
docs.modalai.com/voxl-serial-io/
(ModalAI, 2021).

Team Simplexity | 8

Appendix A: Component Specifications
Component Vendor Model/Type Specs Number Cost Status

Buoyancy Control Home Depot 2" schedule 40 PVC 280 PSI 2 8 Installed

Frame Blue Robotics BlueROV2 frame Black HDPE 1 339 Installed

Waterproof
Housing Blue Robotics 4" diameter acrylic with end caps Acrylic 1 224 Installed

Waterproof
Connectors

Custom Made / Blue
Robotics Penatrator

Aluminum +
Epoxy 10 5 Installed

Thrusters Blue Robotics T200 6 179 Installed

Motor Control Furling32 45A 4-in-1 45A / 6S/ 4 Ch 2 50 Installed

High Level Control

Actuators

Propellers Blue Robotics Included with T200 6 0 Installed

Battery Turnigy 16Ah, 4S Lipo 16Ah, 4S Lipo 1 145 Installed

Converter

Regulator ModalAI Power Module 5V / 6A 1 50 Installed

CPU ModalAI VOXL 1 499 Installed

CPU ModalAI Flight Core PX4` 1 249 Installed

Internal Comm
Network

Ethernet, I2C, SPI,
RS-232, USB Installed

External Comm
Interface 1Gbit Ethernet, WiFi

Compass PNI RM3100 1 25 Installed

Depth Sensor TE Connectivity MS5837 30 Bar 1 9 Installed

IMU Multiple
Included on VOXL and Flight

Core 5 0 Installed

DVL

Vision Sony IMX214 4k30fps 2 $49 Installed

Acoustics

Manipulator

Algorithms: vision OpenCV Installed

Algorithms:
acoustics

Team Simplexity | 9

Algorithms:
localization and
mapping SLAM Planned

Algorithms:
autonomy

Open Source
Software

PX4, NuttX, ROS2,
Yocto, Ubuntu, , ROS2,
OpenCV Installed

Team Size 5

Expertise ratio 3 Hardware / 3 Software

Testing Time:
Simulation

Testing Time: in
water

Inter-Vehicle
Communication

Programming
Languages

C, C++, Python, Shell
Scripting, Matlab,
HTML, JavaScript

