
Troy SPEAR 1

Troy High School NJROTC
RoboSub Technical Design Report

Anuj Patel, Rohan Patel, Sahana Anand, Timothy Elnitiarta,Phoenix Pitaknarongphorn, Taiyu Chen, and
the rest of the Troy High School RoboSub Team

Abstract— The Troy High School
NJROTC RoboSub team’s Autonomous
Underwater Vehicle (AUV), Neptune, was
designed to compete in the 2021 RoboSub
competition. Our first-year team of 11
high school students designed Neptune
using off-the-shelf components and
developed software using Python and
Java. Designing Neptune allowed our
team to learn how to use OpenCV, a
proportional–integral–derivative (PID)
controller, hydrophones, and power
distribution boards (PDB). Our use of a
single AUV was primarily driven by time
and resource constraints and allowed our
team to focus on Neptune’s design. We
used virtual collaboration tools including
Zoom, GitHub, and LucidChart to work
as a team while respecting COVID-19
guidelines.

I. COMPETITION STRATEGY

The competition course this year, 23
(+1) Skidoo, is a continuation of last year’s
competition. This course consists of 5
components:

(i) Choose Your Side (Gate)
(ii) Make the Grade (Buoy)
(iii) Collecting (Bins)
(iv)Survive the Shootout (Torpedoes)
(v) Cash or Smash (Octagon)

As a new team competing for the
first year, our overall approach to this
competition was to tackle the most
important components of the course first and

then move onto tasks that were simple in
order to maximize the number of points that
we could score while still budgeting enough
time to perfect each task that we focused on.

A. Number of AUVs

As per rule 10.3.1 of the RoboSub
2021 Mission and Rules, each team is
allowed to enter up to two vehicles. [1]
While this option was considered by our
team as it would allow for increased time in
the pool and task specialization, we
ultimately decided against it due to the
increased cost and complexity. Our team
determined that investing our time and
resources into one submarine would not only
allow us to reduce complexity in our setup
but also allocate funds towards more
advanced sensors that would enable us to
complete tasks with greater precision. Once
Neptune is fully operational, our team will
reevaluate this decision.

B. Task Prioritization

As a first-year team, we recognized
that giving each task an equal amount of
time would result in an AUV that would not
have the capability to perform any tasks
adequately. Therefore, during the planning
process, we prioritized the tasks in the
following order: Choose Your Side (Gate),
Make the Grade (Buoy), Cash or Smash
(Octagon), Collecting (Bins), Survive the
Shootout (Torpedoes).

Troy SPEAR 2

Fig. 1. The 2021 course diagram with task
prioritization labeled

This order was selected based on
requirements (navigating through the gate is
a required task and thus was our top
priority), point values, and ease. The
prioritization can be seen in the submarine’s
design and software.

II. DESIGN CREATIVITY

A. Vision

Neptune currently uses 2 cameras
and 2 sonars in addition to an onboard
computer in order to detect various objects
that are significant to the course. Object
detection was the main focus of Neptune as
it can be applied to all of the competition
tasks and is essential to the navigation of the
submarine. As such, our software sub-team
dedicated most of its time to the
development of the vision algorithm.

(i) Cameras

Neptune utilizes 2 mounted lowlight
cameras with continuous video capture as its
primary vision input. Both cameras have
been placed on 180° tilt systems for full
coverage of Neptune’s environment. The
front-facing camera has horizontal motion
and the rear-facing camera has vertical
motion. This setup was chosen for its
cost-efficiency, reliability, and simplicity.

A previous setup included an extra
non-adjustable camera mounted on the
bottom of Neptune, however, it provided
minimal additional coverage and strained
the onboard computer so our team decided
to remove it. Another previous setup
involved mounting 2 cameras to the front of
Neptune for high accuracy distance
detection via a stereoscopic vision
algorithm. While this setup did work well,
we found that sonars were not only more
reliable but also easier to apply to a wide
variety of objects.

Fig. 2. Camera placement of Neptune

Troy SPEAR 3

(ii) Sonars

Neptune utilizes 2 ping sonars for
precise object location and obstacle
avoidance. The sonars are positioned to the
immediate left and right of the forward
facing camera.

This setup was chosen as Neptune
always reorients itself such that the front
camera will be facing the object in focus. As
such, forward-facing sonars will be able to
face the same orientation as the camera. Two
sonars were mounted so that Neptune could
determine the real distance between itself
and the object (See Figure 12) Our team
decided to use BlueRobotics’s Ping Sonar
Altimeter and Echosounder as it is more
cost-effective than other alternatives while
still providing adequate reliability and
functionality.

Fig. 3. Sonar placement of Neptune

(iii) Computer

Neptune’s onboard computer is an
NVIDIA Jetson Nano. It runs most of

Neptune’s software including the object
detection algorithm. Our team chose to use
an NVIDIA Jetson Nano over a Raspberry
Pi due to more I/O ports and a better
processor.

(iv) Software

a. Video Processing: Our video
processing algorithm includes
extracting frames of the video feed to
process and color-correcting each
frame. Neptune utilizes the
BlueRobotics Low-Light HD USB
Camera which is calibrated for
underwater low-light conditions
therefore, the lighting and color
accuracy is adequate without any
additional correction. However,
while testing, we noticed that the
video footage had a significant green
tint that interfered with the object
detection. To combat this, we
developed a color-correction
algorithm that implements Sea-Thru,
an algorithm designed by Derya
Akkaynak that recovers the original
colors of objects from underwater
images to allow for consistent
grayscale object detection. [2]

Fig. 4. Non-color corrected image on the left
and image with Sea-Thru algorithm applied
on the right

b. Blob Detection: After a frame is
extracted from the video feed and

Troy SPEAR 4

color-corrected, Neptune uses a blob
detection algorithm to identify any
objects in the pool. The blob
detection algorithm identifies objects
by recognizing when properties such
as color or brightness are different
from an object's immediate
surroundings and is controlled by 4
parameters: thresholding, grouping,
merging, and center & radius
calculation. The blob detection
algorithm outputs a grayscale image
to make the object detection more
precise. The blobs have properties
including area, threshold, circularity,
inertia, and convexity.

Fig. 5. Blob detection output

c. Object Detection: After the blob
detection algorithm is run, Neptune
uses the properties listed above (area,
threshold, circularity, inertia, and
convexity) to attempt to match the
objects to course elements.

The steps taken by Neptune after an
object is detected are split into 3 stages:

1. Initial detection - Neptune moves
around the area of the pool it is in
until it recognizes an object
significant to the current task.

2. Repositioning - Once the
submarine finds the object it is
searching for, it repositions itself
so that the object is in the frame
of the forward-facing camera

with no tilt (right in front of
Neptune)

3. Distance detection - The
forward-facing sonar is activated
and calculates the distance
between itself and the object in
focus.

B. Hydrophones

Our team placed hydrophones on our
AUV to help us detect the pings used to
direct us to the next task. Pingers are present
for the last two challenges to guide the
AUV. We used two teledyne hydrophones
which are omni-directional. This means
sound coming from various directions will
be detected and recorded with equal
sensitivity. Our hydrophones measure the
changes in pressure of the surrounding water
when the ping is sent and convert the sound
waves into electrical energy.

Fig. 6. Hydrophone placement of Neptune

After collecting this data, we use the
MUSIC algorithm to identify the location

Troy SPEAR 5

and angle of the pinger. [3] There are many
advantages to using the MUSIC algorithm
that make it better suited to detect and
identify the location and the direction of
arrival of the pings than other algorithms we
might have considered. These advantages
include its ability to measure numerous
signals at the same time, its precision, and
our larger understanding of this algorithm in
comparison to other algorithms. The way
this algorithm works is that from the data
collected by the two teledyne hydrophones
we have on our AUV, the correlation matrix
is calculated, and the MUSIC spectrum
calculations allow for the estimation of the
largest peaks leading to the estimated
angles.

Fig. 7. MUSIC algorithm output

The hydrophones are placed at
opposite ends of Neptune’s frame, with one
mounted to the front right, and the other to
the back left of the submarine. A previous
setup included placing both hydrophones
near the front of the frame. This provided
for easier coding, however it did not make
full use of both hydrophones so we decided
on our current placement. Having the
hydrophones spaced out allows us to collect
more data from a larger space in the pool,
thus making Neptune more efficient in the
tasks that utilize pingers.

C. Overall Design

Fig. 8. Top view of Neptune

Fig. 9. Front View of Neptune

Troy SPEAR 6

Fig. 10. Left-side view of Neptune

III. EXPERIMENTAL RESULTS

A. Cameras

The first aspect of Neptune that
needed to be tested was the vision algorithm.
This was arguably the most integral aspect
of Neptune if it were to succeed in the
competition. We needed to test if it was able
to correctly identify objects and images
based on the database we provided it.
Neptune’s vision algorithm utilizes a
framework that allows for us to switch
between databases in a single line of code.
Thus, we are able to use different databases
instantaneously to identify numerous images
and objects.

Once we have completed the vision
algorithm, we began the testing phase. We
initially manually inputted images into the
algorithm. Some of these images include an
underwater shot of a pool to test as a
baseline, and home-made orange markers
and other pictures similar to the one used for
the competition to see if the vision algorithm
could successfully identify it. Once the
algorithm could correctly identify all of the
images, the same process was repeated for
the cameras on the AUV.

Fig. 11.Neptune’s object detection algorithm depicted
in a diagram

B. Sonars

Furthermore, needed to test the
accuracy of the sonars and how to utilize
both of the forward sonars to map a front
view of what Neptune should perceive in
order to complete the challenge. We tested
the sonars initially by submerging them
underwater in a pool while moving a board
of wood in front of it. The first issue we ran
into was the fact that the frequency sent was
being distorted by the water and did not
provide a definitive reading. To fix this
issue, we increased the frequency it operated
at to 115 kHz and it started to provide us
with proper readings. We used the data we
received to develop a viewer for a singular
sonar that showed how confident a reading
was and how far it was away from the sonar.

Troy SPEAR 7

Fig. 12. Sonar readings while being held at a constant
distance from surface

Fig. 13. Sonar readings while being held at
variable distances from surface

However, when trying to use the
input from both of the sonars to map the
area in front to the AUV, there was a great

level of inaccuracy as if an object was on the
right half of Neptune, the left sonar would
output a greater distance reading, with the
same happening in the mirrored case. To
solve this problem, we utilized the smaller
measurement as long as the sonar was to the
left of the left sonar and the right of the right
sonar. (See diagram below) If it was in the
middle of the two sonars, i.e. directly in
front of the AUV, we used trigonometric
functions to dictate the true distance the
object is from Neptune.

Fig. 14. Diagram of Neptune’s use of two sonars

Troy SPEAR 8

IV. ACKNOWLEDGEMENTS

Our team could not have functioned
without the support of our generous
sponsors. We would like to thank the
following organizations for sponsoring our
team: Troy High School NJROTC Booster
Club, Raytheon Technologies, Armed
Forces Communications and Electronics
Association, Navy League of the United
States Inland Empire Council, and the Navy
League of the United States STEM Institute.

Fig. 15. Troy High School NJROTC Booster Club

Fig. 16. Raytheon Technologies

Fig. 17. Armed Forces Communications and
Electronics Association

Fig. 18. Navy League of the United States Inland
Empire Council & Navy League of the United States
STEM Institute.

Troy SPEAR 9

V. REFERENCES

[1] “Resources.” RoboSub,
robosub.org/resources/.

[2] Akkaynak, Derya. “Sea-Thru.” Derya
Akkaynak,
www.deryaakkaynak.com/sea-thru.

[3] Zhou, H. & Gu, X. & Jiang, X.. (2006).
MUSIC estimation algorithm based on
vector-hydrophone array. 30. 565-568.

Troy SPEAR 10

APPENDIX A: COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Qty
Total
Cost

Frame BlueRobotics BlueROV Frame Only - 1 $339

Waterproof Housing BlueRobotics
Watertight Enclosure for
ROV/AUV (4″ Series) - 1 $162.90

Thrusters BlueRobotics T200 Thruster w/ ESC - 6 $194

Motor Control Ardupilot ArduSub Software - $0.00

Battery Turnigy
Turnigy Graphene Panther
5000mAh 4S 75C - 1 $81.74

CPU Nvidia Jetson Nano GPU and 4 GB of RAM 1 $98.95

Vision BlueRobotics Low-Light HD USB Camera - 2 $89.00

Pinger Localization BlueRobotics
Ping Sonar Altimeter and
Echosounder

BLUART USB to TTL
Serial and RS485
Adapter 2 $279.00

Hydrophone
Teledyne
Marine Teledyne TC 4013 - 2

$2,625.0
0

Manipulator (Subsea
Gripper) BlueRobotics Newton Subsea Gripper - 1 $439.19

Algorithms: vision - -

Sea-Thru, Blob
Detection, Object
Detection - -

Algorithms:
localization and
mapping - - MUSIC algorithm - -

Open source software - - OpenCV - -

Team size (number of
people) - - 12 persons - -

Expertise ratio
(hardware vs. software) - - 5 mech to 7 software - -

Testing time:
simulation - - - - -

Test time: in-water - - 7 hours - -

Programming
languages - - Java, Python - -

Troy SPEAR 11

APPENDIX B: OUTREACH ACTIVITIES

A. Outreach

In the 2020 - 2021 school year,
SPEAR created a 26 week programming
course for middle schoolers with varying
coding experience. With over 60 students
from multiple states, this program taught
middle schoolers the basics of coding in
Java and Python through lectures, projects,
and quizzes. Concepts covered in this class
included an introduction to Object Oriented
Programing, syntax, iteration, recursion,
booleans, and arrays. After becoming
familiar with basic programming concepts
and learning how to navigate IDEs, each
student successfully completed a “final
project” that demonstrated skills they
learned throughout the year.

B. Partnership with Techtacular

We partnered with a local
organization, Techtacular, to further our
reach in spreading computer science
expertise to young scholars. Techtacular
hosts free events around the local
community teaching STEM-related topics
impacting over 2400 rising technology stars.
Along with Techtacular, we hosted events
both virtually and in person. The in-person
events took place late 2019 before the
COVID pandemic took hold of the world. In
these events we taught elementary school
aged children how to create their own games
using their own imagination. We fostered the
process of taking an idea and making it into
a reality. The students used resources such
as Scratch and App Inventor to create their
own apps/games. Additionally, we were able
to give them an insight into robotics by
having them code Spheros to solve a maze.

In another one of our classes, we gave the
students an introduction to 3D design and
had them design something on their own
that we could print for them. All of these
kids come from different backgrounds and
were able to learn these skills free of cost.

Fig. 19. Technology class hosted in partnership with
Techtacular in late 2019.

