
Design of the Triton Autonomous Underwater
Vehicle for the International RoboSub Competition

Dvir Hilu (Team Captain)∗, Kota Chang∗, Jacob Cronin∗, Kevin Huang∗,
Pavitar Kalra∗, Viktor Moreno∗, Ryan Murch∗, Angie Pinto∗

∗UBC Subbots
University of British Columbia

Vancouver, Canada
Email: ubc.subbots@gmail.com

Abstract—UBC Subbots’s submission to RoboSub 2021 is the
Triton Autonomous Underwater Vehicle (AUV). Novel elements
designed in-house include mechanical components, such as our
enclosure and pull-out mounting plate, and electronics, such
as our battery management system. Our software pipeline,
running on a Jetson TX2, takes advantage of ROS2’s modular
design, introspection tools, and integration with the Gazebo
simulator. With the constraints set by the COVID-19 pandemic,
we focused heavily on development of realistic and physically-
informed software simulations for AUV control, computer vision,
and sound localization, laying the groundwork for testing and
verification of future iterations of our AUV.

Index Terms—robotics, navigation, autonomous, controls

I. COMPETITION STRATEGY

Our competition strategy comes from prioritizing adapt-
ability and reliability. As a fairly young team with limited
resources, it was challenging to aim for all competition tasks
right away. Our strategy is to ensure that the robot can reliably
complete tasks that are earlier in the competition course, while
being mindful of all the design changes that will be required
for future iterations. Although the specific competition tasks
are unknown every year, there are consistencies such as path
finding, recognizing objects, manipulating objects, etc. With
this in mind, we prioritized general functionalities such as
object classification underwater, general actuation and sensor
systems, propulsion system with 4.5 degrees of freedom, and
a sound localization system for all tasks requiring pinger
detection. If competition were to be held offline, we would
expect our robot to pass the gate and follow the path marks
to the first task. Although the actuation system is incomplete,
our adaptable design approach will let us improve our robot
for future competitions to tackle more and more sophisticated
competition tasks.

II. NOVEL DESIGN ELEMENTS

A. Main Enclosure

1) Design Goals: The goals of the main enclosure are to
protect critical operational components, allow for easy main-
tenance and to organize and secure cabling, while providing
a significant buoyant force to the autonomous underwater
vehicle (AUV).

The enclosure measures 8.5” in diameter 2.5” thick with
aluminum end caps. Each end has a double seal to prevent

Fig. 1: Full robot CAD render

leaks. On one end of the enclosure, incoming and outgoing
cabling is routed. These are secured with an epoxy resin while
also being fitted with O-rings to provide both strain relief and
waterproofing. Handles extending about 2” from the enclosure
were included for easier manipulation when installing the
enclosure. The other end can be opened to access the inside
electronics. It includes a pressure valve to equalize air pressure
when on the surface

2) Mounting Plate: The mounting plate mechanism was
designed to reduce strain from waterproof connectors and ease
of access during maintenance in mind. The dual stainless steel
rails allow for extending the aluminium mounting plate out
from the enclosure, allowing access to components from a
more convenient position. The vertical orientation allows for
better loading on the slide rails with minimized deflection and
sturdy component mounting. The plate can also be removed
easily, if needed.

Located directly behind the mounting plate is a cable carrier.
Proper strain relief was implemented on both the moving and
stationary ends of the cable carrier to ensure that connectors
and cables were not unnecessarily strained when moving the
plate, as shown in Fig. 2b.

This also reduces the chance for failure of the waterproof
connectors on the front of the enclosure both in operation
and during maintenance. Securing this assembly are aluminum
brackets attached on aluminum rings pressed against the
acrylic enclosure, cushioned with rubber. At the access end
of the enclosure is a small latch to secure the rails during
operation.

UBC Subbots

(a) Pull-out mounting plate in its stowed position. (b) Pull-out plate when deployed.

Fig. 2: CAD renders of the pull-out mounting plate.

3) Component Layout: Heat was foreseen as an issue from
the Electronic Speed Controllers (ESCs) (top left of Fig. 3),
motor drivers (top middle of Fig. 3), and main computer
(green block on right of Fig. 3). These components were
spread out to avoid overheating. The ESCs were also predicted
to produce significant electrical noise, which led to another
design consideration: signal noise.

Fig. 3: Overhead view of the mounting plate and component
mounts.

To minimize noise, we first made sure that sensitive com-
ponents such as the Inertial Measurement Unit (IMU) (bottom
left of Fig. 3) and the surface communications module (bottom
middle of Fig. 3) use data cables that are less susceptible
to electronic noise. We also made sure that incoming high
power wires stay physically further away from the sensitive
wires which reduces the potential for interference in signals,
increasing overall reliability. Incoming signals from other
enclosures would also be able to pass underneath the main
computer to avoid high power cabling.

The volume of cabling was another consideration when
configuring the layout. Wide gaps between components and
relatively high clearance above the plate allows for flexible

cable routing. A separate cable connection plate is used to
secure cabling when the rail system is being moved. The center
of the plate also provides additional space for USB hubs to
be added.

Mounting hardware was 3D printed with Acrylonitrile Bu-
tadiene Styrene (ABS) on an Fused Deposition Modelling
(FDM) printer to custom fit components. Since the mounting
plate was vertically positioned, mounting hardware had to
allow for components to be cantilevered. The main computer
was the largest component by volume and mass, requiring a
longer protrusion from the plate. It required access to multiple
connector ports, leading to its current design. The ESC mount-
ing hardware is also taller than necessary to facilitate sufficient
heat dissipation. Other components were not as critical in heat
dissipation nor had as much mass, so conservative cantilevered
designs were sufficient.

B. Thruster Configuration and Buoyancy

1) Thruster Geometry: The AUV consists of 6 Blue
Robotics T200 Thrusters to attain 4.5 degrees of freedom
(DOFs) (Fig. 4). Four thrusters are positioned in plane with
the centre of mass at 45◦ to the diagonals. This provides
control over the surge, sway, and yaw allowing the AUV to
have full control over movement in the XY subspace. The
final minimum degree of freedom required for the competition
is control over heave. Two vertical thrusters straddling the
main enclosure are placed in plane with the centre of mass
to provide the vertical control. This configuration had the
added benefit of providing some control over roll. The selected
configuration was chosen as thrusters could not be placed in
front of the main enclosure flanges without preventing access
to the enclosed electronics. The two degrees of freedom for
controlling roll and pitch were determined to not be critical to
the function of the AUV for the competition tasks. Although
some level of control over these degrees of freedom would
be beneficial to the overall stability of the robot, they were
removed as a tradeoff for reduced cost.

2

UBC Subbots

2) Buoyancy: As a direct result of the decision for not hav-
ing significant control over the roll and pitch, a large moment
arm was desirable to prevent unwanted movement in these
directions. Enclosures naturally create a large buoyant force
while the frame and other heavy components (ie. batteries)
are main contributors to the overall centre of mass. These
components are positioned such that the larger enclosures are
higher up on the AUV frame, while the batteries are near
the bottom. The position of these components are limited
by various design and space considerations. This results in a
centre of mass (COM) and centre of buoyancy (COB) that are
not in the desired positions for maintaining level operation
in the XY plane. Weights are placed along the aluminium
extrusion towards the bottom of the robot to move the COM
and increase the righting moment. While foam blocks are
placed along the top plate of the AUV to tweak the COB
and maintain near neutral buoyant forces.

Fig. 4: AUV thruster layout illustrating degrees of freedom

Due to uncertainty in the SOLIDWORKS model, the COM
of the robot will ultimately be determined using tension scales
attached to four points on the AUV for multiple faces. The
weights placed at the bottom of the robot will be adjusted to
change the location of the COM. In turn, the thrusters will be
adjusted to align with the COM to prevent unwanted pitch and
roll. Calculations for COM do not account for the added mass
of the water that will be present when submerged. This is an
acceptable choice due to the open nature of the frame leaving
minimal space for trapped water to accrue. Although some
amount of water will be carried forward in the robot during
motion, we neglect the head generated as the effect will be
negligible at the operational velocity.

C. Control System

1) AUV Model: The dynamics model for our vehicle was
formulated based on the work of Fossen [2], Vervoort [3], and
Gonzalez [4], and describes the equations of motion, damping,
and environmental wrench contributions for low-speed, sub-
mersible vehicles. The second-order equation describing the
robot’s motion in R3 is presented in Eq. 1. This expression
depends on environment forces (τ), gravity (g), buoyancy (η)
in the world-frame position, velocity (v) and acceleration (v̇)
vectors, the mass (M), Coriolis (C) and damping (D) matrices.
Using knowledge of our vehicle’s behaviour in competition
settings, we were able to make practical simplifications based

on our vehicle’s mechanical characteristics and modify the
model accordingly. The usefulness of the AUV mathematical
model is twofold: it provides us with an accurate represen-
tation on the AUV, such that we can linearize the equations
and apply a generic control algorithm to debug and tune our
motion control system, and it also provides a means of calcu-
lating restoring forces in our chosen simulation environment,
Gazebo.

Mv̇ + C(v)v +D(v)v + g(η) = τ (1)

To make the model more practical, we considered that
the AUV was designed to travel at low speeds and is near-
symmetrical about the XY, YZ and XZ planes, which allowed
us to make assumptions to simplify the model, as was done by
Vervoort [3]. We assumed that with a mass matrix calculated
with respect to our vehicle’s centre of mass, we were able
to neglect added mass and cross-product contributions, which
allowed us to treat the mass matrix, and by extension the
damping matrices, as diagonal matrices. Using these simplifi-
cations, we were able to linearize the model with confidence
that around certain equilibriums, our model would be accurate.

When designing the control system, we also noted that our
vehicle dynamics imposed no restrictions on the “pitch” axis
of motion (rotation about the Y-axis), whereas our thruster
configuration prohibits us from controlling motion along that
axis. As well, the robot’s current limitations added design
constraints, since our combined thruster configuration can
only draw so much power from the batteries at any time.
We also determined that we would not be constrained by
the computational performance of our on-board computer,
the Jetson TX2, which means we can consider real-time
compensation algorithms.

2) Control Model: Using the previously mentioned assump-
tions and considerations, we selected a Proportional-Derivative
(PD) controller and a Linear Quadratic Regulator (LQR) to
aid in controller tuning. With this approach, we used the cost
function to directly address our robot’s constraints by applying
a moderate cost to each of our 5 degrees of freedom and a
large cost on the pitch motion over which we have no control.

The controller implementation uses a path planning algo-
rithm to generate position setpoints and a velocity profile for
each step, then uses a generic feedback model to perform
PD control on the desired setpoint using the gain values
determined by the cost function. Using the velocity profile
and a thruster transformation matrix, we are able to calculate
the force contributions by each thruster to achieve the desired
trajectory in each iteration of our control loop.

3) Architecture: Our software architecture was designed
using the open-source ROS2 framework, which allows us to
implement our AUV’s necessary functions as modular nodes
that can run concurrently on our AUV’s Jetson TX2. Telemetry
and sensor data are passed between nodes as messages, which
can be easily monitored for introspection and debugging.
ROS2 is also language-agnostic, so we can pass messages
between nodes written in different languages. For applications

3

UBC Subbots

Fig. 5: Block diagram of the PD controller used by the Triton
AUV.

requiring low-latency processing, we use C++, while Python
is used primarily as a high-level interface for managing our
pipeline. Our custom pipeline manager can be configured to
execute arbitrary sequences of actions, starting and stopping
nodes based on published feedback according to criteria we
define.

4) Testing and Verification: With little pool access due to
the COVID pandemic, our team made the decision to shift our
focus to developing our simulation environment. Simulation
provides us with a cheaper and safer way to test our AUV, as
well as ample synthetic data.

To develop and validate our robots control system, we
created a Simulink project to implement the control algorithm
using our linearized dynamics model. Once satisfied with our
control system’s performance under theoretical conditions, we
then developed a simulation environment and 3D rendering of
our vehicle to further test our control system. This approach
allowed us to incrementally develop the system and decouple
different stages of the design.

The simulation environment we deployed was developed
using the open-source simulation tool Gazebo, which allowed
us to create a simulation description format (SDF) file repre-
senting our robot. The SDF description allowed us to import
an STL-format model of our robot from SOLIDWORKS and
apply mechanical properties such as inertia and damping to
generate realistic restoring forces as the vehicle moves through
space. Using this environment, we developed camera, position,
gyroscope and depth sensor emulators, as well as thruster

Fig. 6: Software verification framework connecting Simulink
control to the Gazebo simulation environment using ROS2 for
message-passing.

driver emulators in the form of plugins that interact with
our control pipeline. We implemented buoyancy and hydro-
dynamic force plugins that use the second-order equations
of motion for the AUV, as well as position, velocity and
acceleration values at each iteration of the simulator’s update
loop. These calculate the environment forces acting on the
AUV at any given time.

We took advantage of Gazebo’s seamless integration with
ROS2 to bring the Simulink project and the simulation
environment together. As shown in Fig. 6, our validation
process involved implementing our equations in the Simulink
project, then implementing the same equations in our real-
time control loop and hydrodynamics plugin used by Gazebo.
With ROS2, we are then able to launch Gazebo alongside our
autonomous control pipeline and communicate with the sim-
ulation environment exactly as we would communicate with
physical hardware. This approach lets us verify and visualize
the vehicle’s behaviour with confidence before moving on to
physical testing.

D. Computer Vision System

1) Underwater Synthesis: Synthetic data has become in-
creasingly used in robotics and machine learning, as it offers
a solution to the issues of data collection and data variety.
However, for synthetic data to be useful, it must be similar
enough to reality. Measures must be implemented to reduce
the issues of sim-to-real domain transfer.

In underwater images, the farther away an object is, the
greener it looks. This phenomenon is caused by light behaving
differently underwater due to scattering and absorption. If we
want our simulation to look realistic, we need to model the
behaviour of light. A key component of our simulation is
underwater image synthesis, which takes an RGBD image

(a) RGB render (b) Depth render

(c) Synthesized image (clear water)(d) Synthesized image (murky wa-
ter)

Fig. 7: Results of underwater synthesis from a) RGB and b)
depth renders, using parameters of c) clear and d) murky water.

4

UBC Subbots

(colour and depth) rendered in our simulation and generates
an RGB image of an underwater scene. Our implementation,
based on the work of Ueda et al. [1], models the physical prop-
erties of light, allowing us to simulate a variety of underwater
environments by adjusting the attenuation coefficients over the
visible spectrum of light (ten different water types are currently
implemented). This physically-informed model ensures our
synthetic data covers a range of different conditions which
will help our models generalize to differences in water quality.
Fig. 7 demonstrates the synthesis of two different water types
from the same RGB and depth images.

The gate and marker tasks require detection of orange
objects. For these tasks, we extract features in the image based
on colour information in the HSV and LAB colour spaces,
which better model perceptual changes in colour than RGB.
This is tested against real and synthetic underwater images to
ensure our segmentation is accurate and robust against noise.

Many of the tasks involve recognition of printed pictures.
For this, we decided to use a YOLO object detection model,
which can not only detect multiple classes of objects, but give
their bounding boxes as well, allowing us to localize the object
relative to our AUV. This is where underwater image synthesis
becomes invaluable, as we want to be confident the effects of
water won’t negatively affect the reliability of our detection.
In tandem with our underwater image synthesis, we designed
a custom plugin for Gazebo that stores bounding boxes of
objects to automatically label data; together they allow us to
generate large datasets for training object recognition models.
Fig. 8 shows examples of generated images with bounding

(a) Object without occlusion

(b) Object with occlusion

Fig. 8: Generated underwater images with automatically la-
belled bounding boxes (visualized here in red).

boxes.

E. Battery Management System

Our focus in power management was toward battery and
system safety. By focusing on these, we could mitigate battery
failure, giving us more potential to succeed in the water. Due
to the power requirements of the thrusters and the noise they
generate, we designated a 4S LiPo battery (14.8V) specifically
for them. All other components in our system are powered by
a smaller 3S LiPo battery (12V). This eliminates noise from
the thruster system impacting our more sensitive low-power
components.

Our design process started with determining the areas most
susceptible to failure. We decided to focus on three main areas.
First, cell voltage monitoring, to ensure no cell in the battery
drops below the safe limit voltage, protecting and increasing
the lifespan of our batteries. Second, current monitoring, to
ensure currents higher than that rated for our wires and
connectors is not surpassed. Lastly, temperature monitoring, to
ensure unsafe temperatures are not reached within our battery
enclosures, increasing the lifespan and mitigating potential for
battery failures.

1) Cell Voltage Monitoring: To monitor voltage, we needed
to isolate each battery’s cell voltage and ensure it never
dropped below the safety requirement. Our design isolated
each cell voltage by using differential op-amps and comparing
the resulting output to a reference voltage. Should any cell be
below it, a relay leading to the rest of our robot would open
and act as a kill switch, preventing any damage to the batteries
and other system components.

To test our design, we simulated battery cells using a power
supply and a voltage divider circuit. Adjusting these voltages
let us mimic a single cell’s voltage decreasing, and monitor the
output to the relay. Testing of our initial design was promising,
as the output to our relay was as expected. At high voltages,
the relay was closed, and once any cell dropped below the
reference voltage, the relay would open. However, due to a
limited current output of the AND gate supplying the signal
to the relay, we found that the relay could not reliably close.
To resolve this issue, we added a BJT amplifier to increase the
current to the relay so it could remain in its steady state. We
also added a fly-back diode as a layer of safety between the
relay and BJT to prevent any back EMF entering our circuit
should the kill switch be triggered.

2) Current Monitoring: To monitor current, we wanted a
simple design that would act as a risk mitigator, pictured
in Fig. 9. To design the circuit, we leveraged a negative
feedback op-amp to keep the voltage on two nodes identical.
Then, using a shunt resistor in parallel with a larger reference
resistance, we could monitor changes in voltage and measure
its relationship to current to get a reading of how much current
was entering our system.

Similar to the voltage monitor, our first design entailed
monitoring these values electrically. However, we soon de-
termined that a kill switch would not be ideal since triggering
that would immediately put us out of the competition. Instead,

5

UBC Subbots

Fig. 9: Circuit diagram for the current monitor circuit

we wanted some way to monitor the current and adjust robot
performance accordingly. To handle this, we decided to include
a small microcontroller in the battery enclosures that could
communicate with the Jetson TX2. The TX2 could then adjust
thruster operation based on the operating current. As an extra
safety precaution, we are also adding a 12A fuse into our
system to act as a last line of defense kill switch. In addition,
we are going to implement an LED indicating if this fuse
blows, letting us quickly swap it out in competition.

3) Temperature Monitoring: The low power system’s ded-
icated 3S battery is extremely unlikely to overheat so it is
not necessary to monitor temperature for that battery. We
decided to solely focus only on the high power 4S battery.
The maximum safe operating temperature of the battery is 70◦

Celsius. To monitor temperature, we are using the integrated
3435K NTC thermistor. Using this thermistor is ideal since it’s
positioned between the battery cells, thus giving us the most
accurate temperature reading. We will be sending this ther-
mistor data to the TX2 via the microcontroller in the battery
enclosure. To mitigate chances of damage or overheating, at
55◦ Celsius we will begin adjusting the operation of thrusters
to give the batteries a chance to cool down. At 70circ Celsius
we will cut off operation.

F. Pinger Localization

In order to complete tasks marked by pingers in the competi-
tion, we require a system that allows us to accurately detect the
location of the pingers at the desired frequency and navigate to
them. We created an in-house Python simulator for this sound
localization system to enable sub-system level testing while
offline testing is not accessible.

The overall architecture for the sub-system is shown in
Fig. 10. Specific models or part numbers for the components
are yet to be determined as this system is still under develop-
ment, however, the general outline has been designed with an
analog interface and a digital processor which would allow us
to conduct all necessary calculations for localizing the sound
pingers.

Fig. 10: Pinger localization system architecture.

1) Analog Interface: The system is designed to work in
isolation, and will be inside its own enclosure to allow it
to be integrated with either Triton or future revisions. As a
result, the enclosure must be quite small and one of the main
requirements for the analog interface circuitry is a small form
factor.

Once detected by five AS-1 hydrophones, the signals pass
through a fixed frequency, 15-45kHz bandpass filter. The
purpose of this filter is to eliminate most non-pinger fre-
quencies before the pre-amplifier, thus avoiding interference
from intermodulation products stemming from the amplifier’s
nonlinearity. Since the filter encapsulates all possible pinger
frequencies, there is no need to make the filter frequency
adjustable, saving a significant amount of space. A frequency
adjustable, narrow-band FIR bandpass filter will be imple-
mented in software to take care of distinguishing between the
different pinger frequencies.

Most teams typically use a gain-adjustable amplifier, but our
team is planning to implement a fixed-gain low noise amplifier.
Though this would result in the amplifier saturating as Triton
moves closer to the pinger, All of the localization methods we
are currently exploring only require to maintain the integrity
of the zero-crossing of the wave. Hence, saturation would not
pose a significant issue.

Lastly, the system will include a voltage shifter that will
shift the AC wave to a level that could be accepted by our
analog to digital converter (ADC).

2) Localization Method: At its current iteration, the system
is designed to locate the relative angle of the pinger on the
xy plane. The pressure sensor on board provides accurate
measurements of the AUV’s height (z-axis), so with only the
angle information we can simply steer at the detected angle
and rely on our other sub-systems to detect the competition
objective once we are close.

At the moment, we are considering two techniques: multilat-
eration and beamforming. Multilateration involves calculating
the time difference of arrival (TDOA) between the signals
and then triangulating the location of the pinger. Since the
waves are in the far-field regime and the hydrophones must
be quite close together for the TDOA calculation, this method
does not always produce accurate distance readings. At the
moment, we calculate the TDOA via cross correlation and

6

UBC Subbots

Fig. 11: CAD Render of the hydrophone mount.

then use a nonlinear least squares (NLS) reconstruction to find
the position of the pinger. This method does not yet account
for signal reflections, and we are currently researching into
methods that will allow our localization to perform robustly
under multipath.

In the case we decide to move forward with multilateration
as our localization method, we have designed an adjustable
mount (Fig. 11) for the hydrophones that will allow us some
freedom in tuning their positions to the ideal geometry. The
design consists of several telescoping mounts which allow for
three hydrophones to translate in plane, with two additional
headphones that can be rotated to vary the distance from the
in plane hydrophones. This design additionally allows for the
side panels to be waterjet cut, which provides short turnaround
for modification in the acoustic centre positions.

Since we are only interested in the direction of the pinger,
we are also considering beamforming, which involves placing
all hydrophones in an evenly spaced array and finding the
direction of maximum superposition of all hydrophone signals.

Fig. 12: Pinger localization simulator architecture.

3) Simulator Architecture: In order to test our initial de-
signs of the system, we have built a custom Python-based sim-
ulator. The simulator architecture, pictured in Fig. 12, empha-
sis modularity and flexibility. With our current architecture, we
design each system module as its own individual “component”.
These components are abstractions of different portions of the
system (certain circuit designs, algorithms, etc.), and could
be chained together or swapped to form different simulation
chains. In its current structure, the simulator allows us to create
different configurations of this simulation chain which allow us
to test different configurations of the system as a whole. Aside
from directly implementing various components in Python, we
are using LTSpice (integrated with Python) to simulate all of
our circuits and Bellhops to simulate sound propagation in the
pool.

III. EXPERIMENTAL RESULTS

Fig. 13: Loss and mAP (mean average precision) score over
training iterations

7

UBC Subbots

(a) Object close to camera (b) Object far from camera (c) Object far from camera with occlu-
sion

(d) Object partially in view

Fig. 14: Various configurations of objects successfully detected by trained model.

A. Computer Vision

We created scenes in Gazebo with a sea floor texture and
various other objects. In each world, we placed a cube textured
with a picture (we chose a cube because each render from a
non-orthogonal angle provides instances of the desired image
from multiple angles). With the scene prepared, we randomly
sample camera positions and orientations, then render the
camera’s view for each pose to generate a large dataset of
synthetic underwater images. Depending on the camera pose,
the cube may be occluded by other objects, which increases
the robustness of the model.

We generated a dataset of 800 underwater images using our
pipeline, with 10% reserved as a validation dataset and the rest
used for training. On our dataset, we trained a YOLOv3 model
to recognize instances of the common test image Lenna.

The score we use to judge the robustness of the model is
mean average precision (mAP), which accounts for the preci-
sion (proportion of detected positives that are true positives)
and the recall (proportion of positives detected as positives)
of the classifier, as well as intersection-over-union of the
bounding boxes. Fig. 13 shows training over 2000 iterations
resulted in a mAP score of 95% on our validation dataset, so
we are confident about the model’s performance. Once pool
access is readily available, we plan on collecting in-water data
for use as a validation dataset, as real-world performance will
be the true test for our model.

Fig. 15: Load vs Output Voltage Current Monitor Circuit

B. Current Monitoring Circuit

Due to COVID-19 safety limitations, we have yet to test
this circuit physically. However, we ran some initial tests in
a simulation software to ensure the basis of our design would
work.

First, we tested how the circuit would behave under different
loads. This was necessary as the exact load on the circuit is
unknown due to in-person testing limitations.

As seen in Fig. 15, we found that the variation of the
voltage output for different loads is significant. Ideally, the
load shouldn’t affect Vo so drastically, so this is something
we are working on improving. We also tested how the output
voltage changed with the current into the robot. We found that
the relationship was linear as expected.

C. Pinger Localization

Although the system is not yet complete, we are using our
simulator to continuously get new insight for how our system
performs and what we can do to improve it. One such example
is shown when testing out our multilateration algorithm. Since
multilateration requires inversely solving a system of nonlinear
equations, most techniques are iterative and require some form
of initial guess. To start off, we decided to implement a simple
nonlinear least squares (NLS) algorithm to find our position.

The NLS algorithm is inputted some initial guess for the
position of the pinger, and then interates that guess to minimize
the sum of the squared difference between the measured
TDOA and the calculated TDOA based on estimated pinger
position. While there are more complex algorithms that we
are planning to explore in the future, this provided a good
starting place for us to test the feasibility of our multilateration
approach.

To start off, we simulated an angular sweep of the pinger
at a distance of 10m relative to the AUV, but inputted a fixed
initial guess at XY coordinates (-10, 0). Note that the height
of the pinger is set to 5m but is assumed to be detected
with full accuracy by the pressure sensor. The results of the
angular sweep are shown in Fig. 16. Despite the method being
simplistic, the simulation shows a worst case average angular
error of 3◦. With more research into more complex method
and as we tighten our strategy and hydrophone geometry, we
expect this number to fall bellow our goal of 1◦.

8

UBC Subbots

Fig. 16: Average angular error for the NLS multilateration
algorithm. The pinger in this trial is located at a distance
of 10m and a height of 5m with a sweeping angle in the
XY plane. The pinger is initially estimated to be at an XY
coordinate of (10, 0). 10 Trials per angle were deemed to
be sufficient for each angle since the simulation results were
relatively consistent.

ACKNOWLEDGMENT

UBC Subbots is supported as a student design team by
the Faculty of Applied Science at the University of British
Columbia. We would like to thank the UBC Applied Science
Professional Development team for supporting us and allowing
the team to continue functioning throughout the COVID-19
Pandemic. A special thanks to our faculty advisors: Ioan (Miti)
Isbasescu, Professor Lutz Lampe, and Professor Joseph Yan.
Finally, we would like to acknowledge our gold level sponsors
for 2021: UBC Applied Science, Shell, and SOLIDWORKS.

REFERENCES

[1] T. Ueda, K. Yamada and Y. Tanaka, “Underwater Image Synthesis
from RGB-D Images and its Application to Deep Underwater Image
Restoration,” 2019 IEEE International Conference on Image Processing
(ICIP), 2019, pp. 2115-2119, doi: 10.1109/ICIP.2019.8803195.

[2] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. Hoboken N.J.: Wiley, 2021.

[3] J. H. A. M. Vervoort, Modeling and Control of an Unmanned Under-
water Vehicle. Christchurch, New Zealand: University of Canterbury,
2008.

[4] L. A. Gonzalez, DESIGN, MODELLING AND CONTROL OF AN AU-
TONOMOUS UNDERWATER VEHICLE. The University of Western
Australia, 2004.

9

UBC Subbots

Appendix A: Triton AUV Component Specification

Component Vendor Model/Type Spec Cost (if new) Status
Foam Ballast Salvaged closed-cell

polyurethane foam
Unknown Legacy Installed

Stainless Steel dive Weights Blue Robotics SS Ballast Weight https://bluerobotics.com/store/watertight-
enclosures/ballast/ballast-200g-r2-rp/

12x$9.00 Installed

Frame Rockey Mountain
Motion Control

1”x1” aluminum ex-
trusion + connectors

https://www.rmmc.net/8020/ Legacy Installed

Waterproof Housing: Main Blue Robotics 8” watertight
enclosure

https://bluerobotic s.com/store/watertight-
enclosures/8-series/wte8-asm-r1/

$343.00 Installed

Waterproof Housing: Battery Blue Robotics 3” watertight
enclosure

https://bluerobotics.com/store/watertight-
enclosures/3-series/wte3-asm-r1/

Legacy Installed

Waterproof Housing: Cameras Blue Robotics 3” watertight
enclosure

https://bluerobotics.com/store/watertight-
enclosures/3-series/wte3-asm-r1/

Legacy Selected

Waterproof Housing: Hydrophone Blue Robotics 3” watertight
enclosure

https://bluerobotics.com/store/watertight-
enclosures/3-series/wte3-asm-r1/

$184.00 Selected

Waterproof Connectors Digikey EN3 series Connectors https://www.switchcraft.com/Documents/
Switchcraft EN3 NPB 602.pdf

$500.00 Purchased

Thrusters Blue Robotics T200 Thruster https://bluerobotics.com/store/thrusters/t100-
t200-thrusters/t200-thruster-r2-rp/

2x$179 +
Legacy

installed

Motor Control Blue Robotics Basic ESC https://bluerobotics.com/store/thrusters/speed-
controllers/besc30-r3/

2x$27 +
Legacy

Installed

High Level Control Teensy Teensy 4.0 https://www.pjrc.com/store/teensy40.html $19.95 Purchased
Propellers Blue Robotics T200 Thruster

Propellers
Included
with
thursters

Installed

Battery 1 Blue Robotics Lithium-ion Battery
(14.8V, 18Ah)

https://bluerobotics.com/store/comm-
control-power/powersupplies-
batteries/battery-li-4s-18ah-r3/

Legacy Installed

Battery 2 Venom 3S Drone Pro Battery
12V

Deprecated, link unavailable Legacy Installed

CPU NVIDIA Jetson TX2 https://developer.nvidia.com/embedded/jetson-
tx2

Legacy Installed

CPU Carrier Board Connect Tech Orbitty Carrier for
NVIDIA® Jetson™
TX2/TX2i

https://connecttech.com/ftp/pdf/ASG003.pdf Legacy Installed

Internal Measurement Units (IMU) Fidget PhidgetSpatial
Precision 3/3/3 High
Resolution

https://www.phidgets.com/?&prodid=32 Legacy Installed

Camera Blue Robotics Low-Light HD USB
Camera

https://bluerobotics.com/store/sensors-
sonars-cameras/cameras/cam-usb-low-light-
r1/

2x$99.99 Selected

Hydrophones Aquarian AS-1 Hydrophones https://www.aquarianaudio.com/as-1-
hydrophone.html

5x$395 Purchased

Depth Sensor Blue Robotics Bar30 High-
Resolution 300m
Depth/Pressure Sensor

https://bluerobotics.com/store/sensors-
sonars-cameras/sensors/bar30-sensor-r1/

Legacy Installed

Programming Language 1 C++ Free Installed
Programming Language 2 Python Free Installed
Open Source Software ROS2 Foxy Fitzroy Free Installed
Algorithms: Vision In-house Underwater Image

Synthesis,
Gate/Marker Detection

Free Installed

Algorithms: Object Detection pjreddie/AlexeyAB Darknet https://github.com/AlexeyAB/darknet Free Installed
Algorithms: Acoustics In-house Bandpass FIR Filter,

Cross Correlation,
Time Difference of
Arrival,
Multilateration,
Beamforming

Free Selected

Algorithms: Navigation/Control MATLAB
R2019b

PD position,
controller,
LQR controller,
optimization,
Linearization,

UBC
License

Installed

Battery Management System In-house circuit designed from scratch from basic
components

$100 (PCB +
components,
for both
batteries)

Installed

Team Size 26
Expertise Ratio
(Hardware:Software)

19:7

Testing Time: Simulation 30h
Testing Time: In-water 0h (COVID restrictions)

10

