
Robosub 2021 Technical Report
Underwater Robotics at Berkeley

communications@urobotics.berkeley.edu

Abstract—Underwater Robotics at Berkeley presents the Bear-
acuda, our latest AUV designed for the 2021 Robosub com-
petition. The Bearacuda features several major innovations to
improve its performance, including a custom-built carbon fiber
chassis, two manipulator arms, and an adaptable perception
system. Our mechanical engineers used CAD software to optimize
the AUV’s shape and components to minimize drag and complete
mission tasks effectively. CAD models and analyses allowed team
members to tailor the Bearacuda for its mission while working
remotely. An all-new approach to perception also maximizes
the AUV’s efficiency: the AUV can actively choose between its
perception algorithms depending on which is most effective under
the given conditions. Additionally, we implemented a cascaded
PID system for our controllers, and tested our entire software
loop in Gazebo simulation to ensure our software stack was
robust. These innovations consolidate to form an AUV prepared
to excel in the 2021 competition.

I. COMPETITION STRATEGY

Our AUV was designed to complete all of the competition
tasks. While this required a wider range of functions, the bene-
fit of higher point potential outweighed the risk of complexity.
We emphasized simplicity and efficiency throughout the de-
sign process, making parts as compact and straightforward as
possible to maximize reliability.

We designed the AUV with originality as a central focus,
creating custom designs for as many features as possible
(excluding foundational parts like the motors and battery).
Customization of key components such as the chassis, gripper,
and torpedo launcher allowed us to continuously iterate on our
designs throughout the year in CAD software and tailor each
detail to the task at hand.

The team is divided into three departments: hardware, soft-
ware, and operations. The hardware department includes me-
chanical and electrical engineers who planned and constructed
the AUV frame, payload tools, and electrical components. The
software department conducted simulations and enabled the
AUV to sense and respond to its environment. The operations
department led recruitment efforts, organized finances, and
managed public relations. Each department met weekly to
delegate tasks and exchange feedback on progress, and all
of the departments convened together for a separate weekly
meeting to stay informed and integrate the AUV system.
With this organization, each department independently focused
on product development while maintaining interdepartmental
communication, leading to an improved and well-unified ve-
hicle.

Our engineers adopted a large-to-small scale approach to
construction, starting with general tasks like frame design
before honing in on payload tools and mission-specific fea-
tures like the torpedo launcher. The first several months of

production were dedicated to creating online 3D CAD models
of the ROV and payload tools to evaluate effectiveness and
feasibility of the product before manufacturing. Because of the
COVID-19 pandemic, we spent much of the year perfecting
these 3D designs and conducting computerized analyses such
as stress tests, as well as carrying out control simulations
of the full AUV; this collective focus on remote design and
simulations optimized our ability to assess the vehicle without
in-person testing. As we approached the competition deadline,
members received parts to work with remotely for construction
and experimentation.

II. DESIGN CREATIVITY

A. Hardware

1) Mechanical: The Robosub’s chassis consists of custom
designed high-density polyethylene components, with cut-outs
for the main electrical housing, the battery compartment, the
manipulator, and the torpedo launcher. The chassis was made
to fit around the central electrical components, with design
focuses being mounts for the stereovision camera setup and
8 Blue Robotics T200 vertical and horizontal thrusters. The
truss design style was meant for maximum stability while
maintaining good manufacturability, and the large plates have
holes for water flow and modularity. The front-side electronics
plates were added later on in the engineering process to
stabilize and reinforce the frame, and still feature the truss
design. There are spots for the exterior thrusters on the main
side components, and have two thrusters per side. The battery
enclosure on top of the frame adds to the buoyancy of the
design. Brackets to attach components together are planned to
be 3D printed.

1



Our gripper is a rel-
atively simple design; it
is powered by a threaded
rod drive which converts
the rotary motion of a
Blue Robotics M200 motor
into linear motion, causing
an assembly of aluminum
plates to open and close,
actuating the claw.

In more detail, a
threaded rod is attached to the output shaft of the M200
motor via a long shaft collar. This rod is then threaded
through a nut, which is attached to a thin machined aluminum
plate via a 3D printed plate. This plate is attached to a series
of other machined plates via a series of non-threaded shafts,
which are held in place via either shaft collars or snap rings.
The specific configuration of plates results in the open-close
actuation of the claw when the threaded rod is spun by
the motor. Instead of being machined out of aluminum, the
plates may also be 3D printed; however, this will result in a
much weaker claw that is more prone to breakage, and is not
recommended. The entire assembly is housed in a 1.9” OD
(1.5” ID) PVC pipe, and is held in place using plates and
non-moving shafts.

Various compromises and trade-offs were made in this
design. First, the decision to house it inside a relatively small
PVC pipe was made in the interest of ensuring it could fit
on the AUV and be attached with relative ease, as well as
detached easily for servicing. However, it led to many trade-
offs in regards to the internal components which could be
used; only parts less than 1.5” in two perpendicular axes of
their dimensions could fit inside the PVC pipe. Thus, many
design considerations, such as the use of a worm gear system
or a planetary gear system were discarded due to their space
requirements.

In addition, compromises were made in regards to cost.
Underwater Robotics @ Berkeley is a student club, reliant
on university funding; as a result, we are unable to procure
extremely expensive materials or source extremely expensive
parts. As a result, decisions were made to greatly simplify the
interior from its first design. In prototype designs, the interior
used a system of spur gears to reduce the gear ratio; this
was removed because the gears included in the design were
prohibitively expensive, and replaced with a screw drive.

Finally, compromises were made in regards to safety. The
Blue Robotics M200 motor was selected for use because of
its ability to operate underwater, despite its lack of precise
position control. While other motors such as precise position-
control stepper motors would have been more desirable in
this role, they are not waterproof and would have required
extensive, careful waterproofing of the claw. This would be
difficult and expensive to completely achieve; in addition, in
case of a failure, the entire motor would fail, which is both
dangerous and expensive. Another trade-off made with regards
to safety was the shift away from a gear-driven claw design to

a plate-driven one. The original design was somewhat easier to
machine since it included far less aluminum plates; however,
it made use of 3D printed parts in critical load-bearing areas,
which would have led to potential failure. Thus, the decision
was made to move to a design using metal in the critical places,
improving strength.

The torpedo launcher
is designed to accurately
launch a torpedo while
maintaining modularity
and compactness, allowing
for flexible mounting on
the AUV. Due to COVID
limited testing has been
conducted, so inspiration
for the torpedo design was taken from military torpedoes. The
launching system is spring powered and utilizes pre-owned
motors to launch. Though simple, the launching system has
very few areas for error.

The torpedo has been designed to emulate military torpe-
does, since the COVID-19 pandemic has greatly impacted our
ability to manufacture and prototype designs. There are four
fins on the torpedo for horizontal and vertical stability, helping
it launch straight. The torpedo is neutrally buoyant, decreasing
the buoyant force and increasing accuracy. The curvature of
the torpedo body is designed with hydrodynamics in mind,
limiting the wake left behind as the torpedo travels through
the water.

All our design choices maximize the tor-
pedo’s ability to shoot as far and straight as
possible. The spring-powered launcher pro-
vides a reliable and cost effective source of
force to eject the torpedo. To initiate a launch,
the tab that holds the torpedo in place is ro-
tated, allowing the spring to extend and launch
the torpedo. Although the launcher’s design is
straightforward, it is compact, cost effective,
and easily mountable anywhere on the AUV.

2) Electrical: Learning from the experi-
ences of developing our past vehicles, we
strove to create an architecture for our elec-
trical system that was unified, modular, and
repairable. In order to facilitate quickly adding and removing
components such as thrusters, end effectors, and sensors, we
chose a standard set of signals that would serve as the bus
connecting all of them together. Reviewing our use cases,
we chose to provide 12V, 5V, and CAN bus connections.
The CAN bus is widely used in the automotive industry as
a noise-resistant, reasonably high-speed interconnect which is
why we chose it for our architecture. With one bus connecting
everything, we greatly reduced the amount of cabling used and
even enabled daisy chaining modules together. Of course, there
are certain components with requirements vastly exceeding the
capabilities of our bus, such as the high current draw of our
thrusters or the high speed communication of our cameras.
In those cases, we had dedicated connections to meet those

2



needs.

Fig. 1: Daisy chain test

To maximize repairabil-
ity and modularity, we split
our electrical system across
three enclosures. The main
tube is flanked by both
the battery tube and cam-
era tube. The main tube
contains the entirety of
the computation and mo-
tor drivers. It has a single
backplane with connectors
for the various devices we
have. Cables run out to our cameras, battery, end effectors,
and each of our thrusters. One side of the tube has what we
call a ”sideplane” to facilitate removing the entire backplane
assembly for repairs. The battery and camera tubes are simpler
in construction and just have mechanical mounts for their
respective components.

Fig. 2: Electrical connection diagram

For firmware development, we chose the Mbed platform
due to its ease of use, feature set, and community support.
We chose Mbed Studio as our IDE to make it easier for new
members to learn. Getting Git working with Mbed Studio so
we could do version control on our firmware took some tricks
with symlinks, but at the end we had a monorepo to easily
distribute and develop firmware with.

Fig. 3: Template schematic

For hardware development, we developed the NOGGIN
system which consists of both a general purpose board that

is good enough for around 80% of our tasks and a KiCad
template that people can build on top of. The general purpose
board contains a brushed motor driver, CAN bus connections,
current and voltage sensing for debugging/telemetry purposes,
and I2C, UART, DAC, and PWM breakouts. The main idea
of NOGGIN was to shift focus away from the details of
microcontroller supporting circuitry over to the actual task the
board is accomplishing, whether it be reading from a sensor
or controlling a motor.

Fig. 4: Two NOGGIN boards

For integration of
our electrical system,
we chose a stan-
dard set of connec-
tors for various ap-
plications. DuraClik
connectors are ade-
quate and compact
enough for all low
current tasks. Molex
Ultra-Fit is good for
medium current use
cases such as motors.
Molex Super Sabre is our battery connector due to its high
current handling. It was difficult finding a small enough
connector for our board-to-board connections such as those on
the backplane, but we eventually settled on the new Samtec
mPOWER connectors which can handle a surprising amount
of current in a small package. Unifying our connectors meant
that we didn’t waste time deciding on and buying different
connectors for each part of our system.

B. Software

At the start of the school year, we wanted to have a software
system that is easily adaptable to different robot hardware,
and also be robustly tested in simulation. For this reason, we
decided to upgrade from our old ROS 1 system to ROS 2,
which was becoming the predominant robotics middleware.
We used an NVIDIA Jetson AGX Xavier as our main compute
with a ZED 1 stereo camera as our front camera, a Logitech
C920 as our bottom camera, and a Adafruit 9-DoF IMU fusion
sensor.

1) Controls: Our main sensor is a 9-DoF IMU that gives us
accelerometer, magnetometer, and gyroscope readings. Using
the measurements, we have 2 separate PID systems: one for
velocity control and one for orientation control. For going to a
desired velocity, we utilize acceleration-based control through
a PID controller. We provide a desired velocity vector in the
x, y, z directions and the PID outputs the desired acceleration
of the sub. Then, we use the moment of inertia matrix to
go from body acceleration to body force, and a precomputed
Jacobian transpose matrix to go from the desired body force to
the individual thrusts of each motor. These motor thrusts are
then converted to a PWM signal through linear interpolation
and sent to the motor controllers.

The orientation controller behaves similarly and takes a
desired orientation parameterized by yaw, pitch, and roll axes

3



as the input and processed this input through a set of cascaded
PID controllers. In this case, we empirically tuned gains of
the first PID, which took in a desired orientation and output
a desired angular velocity. We specifically tuned for stable
rotation along the yaw axis, as we will almost always want
our roll and pitch to be at 0 radians to stabilize the sub. The
second PID takes angular velocity and converts it to angular
acceleration.

To perform route planning for the course, we used a
behavior tree provided by the BehaviorTreeCPP library. We
used a behavior tree instead of a state machine as behavior
trees allow for a simpler graphical structure which allow reuse
of components. Each behavior tree node had a corresponding
ROS node that it would use to send requests, as well as an
action server or service that would process these requests and
return the result to the node. Our demo behavior tree to go
through the gate is shown below.

Fig. 5: Behavior tree for going through the gate

2) Perception: In general, our algorithms for identifying
objects of interest (such as the gate with two posts) in the
input video feed from the sub involved thresholding out the
background water. Usually, the threshold was based on color,
i.e. a certain shade of blue. This would isolate the object
and simplify the process of identifying its location based on
the contours of the thresholded image. This method, while
somewhat effective for each task individually, wasn’t very
reliable and scalable since we would manually hard code the
color threshold for each task. In addition, thresholding by color
often wasn’t enough to get a stable contour of the object of
interest, and thus noise was a glaring issue.

Fig. 6: Gate task which involves detecting two posts and
maneuvering in between them. This is our naive color thresh-
olding, which introduces noise and breaks down in various
light levels.

Our first approach to detect tasks distinguished by specific
colors was analyzing histograms of various color spaces and
utilizing the locations of the peaks in the distribution. The
implementation involved changing the original RGB color
space into other color spaces such as LAB and then running
Otsu’s binarization algorithm to threshold the desired peak
in the distribution. By selecting the appropriate peak, the
correct color would be chosen. This approach relied on the
shape of the distribution and was more robust than fixed color
thresholding.

Fig. 7: Code pipeline that shows each step of the process from
a raw video feed to resulting bounding boxes around task-
relevant objects.

Accurate and efficient background removal is instrumental
in our vision pipeline. To negate the downfalls of using
one algorithm which only excelled in certain situations, we
designed an intelligent switching methodology which selects
which of two different algorithms to use. To determine when
to switch algorithms, we analyzed contour centroid stability
and contour area. Contour centroid stability can be defined as
the tendency for the centroid of a contour to move. Generally,
the centroid should be stable, as rapidly translating contours
mean that a given algorithm does not focus on a specific
object or feature in the frame. In general, the contour area
cannot cover significant portions of the image (e.g. the whole
frame), as it would not provide any useful information about
particular objects in the image. One of the two algorithms
used is a K-Nearest Neighbors algorithm, as described in [1]
and implemented in OpenCV. This algorithm tends to get full
detection of objects and is more efficient. The other algorithm
is an optimized implementation of “Minimum Barrier Saliency
Detection” in [2], which tends to be robust to noise, but is more

4



computationally expensive.

Fig. 8: This showcases the different components of our much
more advanced combined background removal algorithm. Top
left image shows the output of the Minimum Barrier Saliency
Detection algorithm, while the bottom left image shows the ex-
tracted contours. The top middle image showcases the output
of the K-Nearest Neighbors algorithm, and the bottom middle
image shows the output contours from that. The top right
image shows the contours of the algorithm that is currently
selected, and the bottom right image demonstrates a bounding
box representation of the output.

Switching between two distinct algorithms can produce
vastly different results. A rectangle point averaging scheme is
implemented to create a gradual transition between potentially
vastly different outputs. In practice, this averaging scheme will
also help mitigate the effects of noise that arrive from the two
algorithms described above, as outlier artifacts are considered
less.

III. EXPERIMENTAL RESULTS

To test our software system, we utilized the Gazebo simu-
lator with the underwater vehicle library UUV Simulator [3]
and its ROS 2 port Plankton.

Fig. 9: Image from our Gazebo simulator showing the test sub,
Robosub pool, and prior game elements

We developed our controller algorithms in ROS 2 and
interfaced them with the existing Plankton codebase to actuate
the Gazebo ROS controllers. We additionally added a copy of
our ZED camera and IMU onto the simulation sub to emulate
the sensor suite of our actual sub. To test our controllers and
determine their accuracy, we compared the ending configura-
tion of the sub using our onboard IMU vs. using the ground

truth pose and twist data from the simulator and found that
both were able to achieve our desired setpoint in a similar
amount of time.

The Saliency Detection and K-Nearest Neighbors algo-
rithms described above detect and identify a set of 4 large dice
underwater (from the 2018 competition) with 30.2% accuracy.
There were two main reasons which we determined were the
cause of the discrepancy. The first is the small bit of noise that
still exists even after the background removal, which causes
the resulting bounding boxes to jump around. This can be
mitigated by interpolating between the periods of stability,
through the periods of noise. The second reason is the method
of measurement itself, the ground truth, is somewhat flawed
due to bounding boxes only having been measured 3 times per
second for 30 FPS footage. Often, thus, the ground truth lags
behind.

Since Minimum Barrier Detection relies on a raster scan of
all the pixels in the frame, it underperformed on our onboard
computer, NVIDIA Jetson AGX Xavier achieving 12 FPS,
which did not give enough room to perform further analysis
on the frame. Thus, to increase algorithm efficiency and
headroom, we implemented a few major improvements. First,
to mitigate the slow performance of Python when compared to
C, we used the Cython module, which compiled the code into a
C-based interface. This meant accessing low-level memory as
frequently as possible, instead of falling back to slower Python
implementations and the Global Interpreter Lock (GIL), which
limits processes to one thread. We also predefined memory
allocation blocks for the code. Finally, we noticed that it was
not necessary to analyze every pixel in the raster scan, as
we achieved similar classification accuracy. Thus, we chose
to run the algorithm skipping to every 5 pixels in the frame,
such that every 25 pixels were subsampled to one pixel. These
performance improvements led to a 53% FPS gain on the
Jetson. This performance gain meant that we were able to more
comfortably implement our task algorithms with the remaining
overhead.

ACKNOWLEDGEMENTS

We at the Underwater Robotics Team at Berkeley would
like to thank our sponsors:

Sofar Ocean
Omnisci
Nvidia

Solidworks
Berkeley Engineering

Berkeley OCF

REFERENCES

[1] Z. Zivkovic and F. van der Heijden, “Efficient adaptive
density estimation per image pixel for the task of back-
ground subtraction.” in Pattern Recognition Letters 27,
vol. 27, no. 7, 2006, pp. 773–780.

[2] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and
R. Mech, “Minimum barrier salient object detection at 80

5



fps,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1404–1412.

[3] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R.
Douat, and T. Rauschenbach, “UUV simulator: A
gazebo-based package for underwater intervention and
multi-robot simulation,” in OCEANS 2016 MTS/IEEE
Monterey. IEEE, sep 2016. [Online]. Available: https:
//doi.org/10.1109%2Foceans.2016.7761080

6


