
Michigan Robotic Submarine | 1

Michigan Robotic Submarine: Huron
Alexander Steinig, Kobi Wettstein, Thomas Brunner, Kathryn Wakevainen, Emi Yuki,

David Reihl, Andrew Huston, Ben Manley

Abstract—Michigan Robotic Submarine
is a student project team at the University of
Michigan entering its first year in the
RoboSub competition. Our autonomous
underwater vehicle, named Huron, is
characterized by a simple design with a large
free surface area to allow for modularity in
mounting additional components. It was
designed to have rapid manufacturing and
testing capabilities in addition to flexibility in
incorporating new systems. We identified
three tasks to focus on – the buoy task, gate
task, and torpedoes task – which allowed us to
lay the groundwork for attempting more
challenging tasks in the future. The
mechanical team was responsible for
designing the frame, torpedo launcher system,
and electronics mounting components. The
software team designed and implemented a
system architecture that included navigational
programs, object detection software, and
acoustic signal processing. With the limited
accessibility of facilities during the COVID-19
pandemic, some in-water testing was
conducted in the Marine Hydrodynamics Lab,
supplemented with simulation to prepare our
AUV for the course.

I. COMPETITION STRATEGY

Our Autonomous Underwater Vehicle
(AUV) is equipped and has been designed to
complete three competition tasks: passing
through the gate, bumping into the buoy, and

shooting torpedoes. We decided to focus on these
tasks since they can be completed primarily
using visual identification through computer
vision (CV) and a hydrophone system, allowing
us to focus our efforts on these two primary
sensor systems. We are also in the midst of a
two-year design cycle to develop a gripper
mechanism for use in future competitions.

In order to allocate more time to testing the
AUV’s algorithms, managing complexity in the
mechanical systems was essential. Unfortunately,
after we had designed and manufactured the
carbon fiber hull, COVID-19 shutdowns
prevented our team from completing its
construction. Given our limited ability to
manufacture in-person, we reevaluated our team
goals and decided to shift focus to an alternative
design with an emphasis on ease of
manufacturing and assembly.

Fig. 1: CAD rendering of Huron

Michigan Robotic Submarine | 2

The software team developed our
software architecture design, initial navigational,
and object detection algorithms remotely. As
with the mechanical system, our Robot Operating
System (ROS) - based architecture was
developed to be expandable, as well as quick to
deploy and debug. The software team utilized
simulation and a BlueROV as an initial testbed,
while the mechanical team completed the
construction of Huron. In order to enable our
software team to focus on developing our camera
and hydrophone systems, we elected to use many
off-the-shelf electrical components similar to
those in the BlueROV to retain some continuity
when switching to Huron.

II. Design Creativity

A. Mechanical

1) Frame: Limitations in our ability to
manufacture in person due to COVID-19
restrictions played a large role in how we
approached the design of Huron’s frame. To
reduce our manufacturing load, we prioritized
simplicity, while still allowing the frame to be
expandable for future mechanical systems. With
these priorities in mind, we designed a frame
consisting of several 0.16” thick 6061 aluminum
plates, which serve as the AUV’s primary
structural components. The frame contains
sufficient mounting space for every other
necessary piece of hardware, including
electronics, torpedo launchers, thrusters, a bottom
facing camera, and hydrophone. The design
allows for the addition of other systems as well as
weights and flotation devices to manage the
AUV’s hydrodynamic stability. Because each
plate is two dimensional, only a waterjet was
needed to manufacture these parts. As a result,
our entire frame needed only a few hours to be
manufactured, considerable time manufacturing in

person. We also developed a 3D-printed
electronics chassis within an acrylic, watertight
tube to provide mounting points for every piece of
electrical hardware. This tube interfaces with the
front and rear plates of Huron via dual o-rings.

Fig. 2: View of disassembled frame

2) Electronics Chassis: Our desire to make
the electronics easily accessible guided the
design of our 3D-printed electronics chassis. The
front plate can simply be removed and the
electronics chassis can be slid off of four rods to
access the internal components, as shown in
Figure 3 along with the Zed 2 stereo camera and
3D-printed camera mount. The mounting of the
electronics on each of four exterior faces of the
chassis allows these systems to meet the
dimensional constraints defined by the size of the
acrylic tube without needing to create stacks of
electronics which make them less accessible. The
large surface area of the chassis also enables the
incorporation of additional electrical systems in
the future.

Michigan Robotic Submarine | 3

Fig. 3: CAD rendering of electronics chassis

To efficiently use the available space within
the acrylic tube, we decided to place the battery
inside the chassis. We designed two interior
supports which serve to constrain lateral
movement of the battery. Two removable
3D-printed supports also prevent the battery from
moving forwards or backwards. Figure 4
illustrates the locations of these supports.
Because the battery has a significant weight,
ensuring that it is properly constrained helps
prevent undesirable pitching during operation.

Fig. 4: CAD rendering of interior of electronics chassis

3) Torpedo Launchers: We opted for a
spring-actuated torpedo launcher rather than a
pneumatically-controlled mechanism, because
springs provide greater reliability and simplicity.
The release mechanism primarily consists of a
solenoid, the plunger of which holds the torpedo
in place against the compressed spring via a
notch in the torpedo until it is ready to be fired.
We also wanted to design this mechanism to be
easily accessible and easy to use. Because the
notch covers the entire circumference of the
torpedo, each torpedo can be loaded in any
radial orientation. A simple part that interfaces
the spring with the torpedo also ensures that it is
centered in the barrel.

After completing the initial design, we
made several design decisions with the intention
of improving the manufacturability of the
torpedo launchers. This involved making the
barrel and solenoid mounting cube separate
components, each of which were significantly
easier to manufacture than they would have been
in the original design. We also replaced the end
of the barrel with a snap ring to make the inside
of the barrel accessible from more than one side.
This eliminated the need to use an unrealistically
long grooving tool to manufacture grooves
located at the end of the barrel. Because the
solenoid can be exposed to water, the second
design iteration did not incorporate a housing for
the solenoid. This new system design makes the
launcher simpler and easier to manufacture. The
top image of Figure 5 shows an exploded
drawing of the original torpedo launcher design,
while the bottom image is an exploded drawing
of the second design iteration of the launcher.

Michigan Robotic Submarine | 4

Fig. 5: Exploded view of initial torpedo launcher (top) and
modified torpedo launcher (bottom)

Fig. 6: CAD rendering of final torpedo launcher
version

4) Gripper: Due to the inherently complex
nature of a gripper mechanism, our priorities
were that the end effectors could move under
the power of a single motor, and that the gripper
would have a high reliability. After researching
several options, we decided that linear actuation
would best fulfill those priorities. Linear
actuators contain relatively few parts compared
to other types of actuators, and allow us to use a
single motor to move both end effectors. A
CAD rendering of our gripper mechanism is
shown in Figure 7.

Fig. 7: CAD rendering of gripper

B. Software

1) Architecture: We developed our software
architecture with flexibility, expandability, and
ease of debugging in mind. To meet these
requirements, we chose to build our architecture
on the ROS framework which provides a
relatively simple interface for multiple programs
to run and communicate together at once. We
began with a central algorithm, dubbed "captain",
to start and monitor nodes based on a set task list.
Each competition task has its own node which
utilizes our various support nodes as necessary.
These support nodes include our object detection
and distance node, which use our image
processing (further described in section 3) and
our stereo camera. Another one of our support
nodes, “centering and depth”, is utilized by our
task nodes to maintain a designated depth and
center the AUV on an object detection bounding
box using tuned Proportional Integral Derivative
(PID) control. Additionally, an error handling
node monitors critical thresholds, such as depth
being exceeded, leaks, and inter-node
communication loss. A critical error results in an
abort and the AUV surfacing.

Michigan Robotic Submarine | 5

Fig. 8: Top-level ROS architecture with major
connections (error handling node not shown). MAVROS is

the node on our PixHawk flight controller.

2) Navigation: Given that the gate and buoy
tasks were within visual distance of their
respective starting points, we opted for a simple
approach that could be improved upon in the
future. We decided to avoid the complexity of
absolute localization with respect to the
environment. Instead, we used our computer
vision input to constantly reassess relative
position to complete and navigate between these
tasks. Additionally, for the torpedo task, we
developed our hydrophone system to allow us to
acoustically navigate by calculating the desired
heading using an arrangement of three
hydrophones. This approach to navigation
allowed us to focus our development primarily
on developing our computer vision and
hydrophones system. Those systems will be
explained in more detail in the following
sections.

3) Image Processing and Object Detection:
To implement real-time object detection on our
AUV, we needed to upgrade our system by
adding an additional computer and camera. After
researching different computers, we added a

Nvidia Jetson Nano to our system to utilize its
GPU for image processing. This resulted in a
greater than 3 times increase in frame rate when
compared to running the image processing on our
Raspberry Pi – a necessary improvement to
enable reliance on our object detection with a
moving AUV. For the camera, we integrated a
Zed 2 stereo camera into our system. We selected
a stereo camera to be able to estimate object
distance from the vehicle.

Fig. 9: Bounding box drawn around the gate as detected
by our model

For object detection, we decided to use a
convolutional neural network because team
members had experience in this area. After
researching different frameworks, we determined
that an off-the-shelf, pruned version of a
YOLOv3 (You Only Look Once, version 3)
model was ideal [1]. Due to the pruning (removal
of the least important weights from the model),
this version allowed us to detect objects at a
sufficient rate, while still being large enough to
handle the number of classes required for the
competition. We ran this model using the
OpenCV library to process an average of 8
frames per second. If an object is detected, a
bounding box is drawn around it, and that
information is sent to our primary control
algorithm.

Michigan Robotic Submarine | 6

To train the model, we used images of
objects that we wanted to detect (e.g. the gate)
that we collected and labeled. These images were
chosen in an attempt to capture the object in a
variety of angles and lighting, allowing the
model to recognize it from as many positions as
possible. We updated the model through an
iterative process as new training data was
accumulated, giving the model a better
understanding of what an image of the object
looks like each time.

To further improve the generalizability of
our model, we explored using an algorithm that
adjusted the white balance of each image [2].
This algorithm reduced the effects of more
extreme colors, which is ideal for our primary
testing environment that provides predominantly
green images. We tested training our model on
the white balanced images as well as white
balancing each frame during our real-time
object detection. Our results showed an
insignificant average increase in object
detection confidence (4%) with a significant
decrease in our framerate (50%). Because the
cost currently outweighs the benefit, we do not
utilize white balancing in our primary
algorithm. Despite this, we plan to further
investigate similar algorithms that may achieve
better results.

Fig. 10: Original image (left) compared to a
white-balanced image (right) in a predominately green

environment

4) Hydrophone System - Algorithm: In order
to find the acoustic pingers that locate the
torpedo task, we developed our hydrophone
system. The system utilizes three omnidirectional
hydrophones mounted in a triangle configuration
on the bottom plate of Huron. Our algorithms
relied on a difference in time of flight to
determine the ping direction. A full diagram of
our system, which will be discussed in the next
two sections, can be found in Figure C-1.

When comparing two acoustic signals,
the easiest way to do this comparison “on
paper” is to identify their phase offset (assuming
it is less than 360 degrees). However, in
practice, identifying the exact points of a sine
wave and where it starts is difficult with data
collected from a sensor. Therefore, we instead
subtracted one signal from another and took the
root mean square (RMS) of the difference.
When the two signals perfectly align, this
creates a minimum value whereas a 180 degree
offset creates a maximum value. We chose to
use the RMS as it provides a good average for
analog, periodic signals. Additionally,
MATLAB and Simulink simulation showed a
mostly linear relationship between both delay
time vs RMS and RMS vs offset angle (See
Appendix D). A linear relationship is desired
here as we can easily map the input to a unique
output, allowing us to have confidence in our
mapping from RMS to offset angle.

The offset angle and the geometry of our
hydrophone's position gave us two possible
headings for each hydrophone. Comparing these
headings with the other pairs of hydrophone
readings, we established the correct heading. We
then used a PID algorithm to maneuver and
approach this heading.

Michigan Robotic Submarine | 7

5) Hydrophone System - Filtering: We
designed a custom digital and analog signal
processing chain to ensure our algorithm receives
quality data. The signal from each hydrophone is
passed through our custom printed circuit board
(PCB), which cleans the signal and digitizes it.
The PCB includes an amplifier, first order low
and high pass filters, buffers, and a 16-bit analog
to digital converter (ADC). The signal is then
communicated over the digital Inter-IC-Sound
(I2S) protocol from the ADC to our main
computer.

Once the signal is received on the main
computer, it is passed through a tight,
variable-adjustable band pass filter. From there,
the signal is tested and optimized based on
testing with other teams' data acquired through
the data sharing program. Next, we either apply a
Fourier transform for debugging purposes or start
our calculation process to calculate the heading
of the acoustic pinger.

6) Simulation: With our limited access to
pools during the pandemic, we began to look into
simulation as an alternative to in-person pool
testing. After some initial research, we started
with an open source Gazebo simulation and some
libraries to connect it to ArduSub and our
software over ROS. As a robotics simulator,
Gazebo accurately responded to our programmed
movements. For simulating computer vision, we
experimented with Blender, a modeling and
rendering tool, to represent our pool environment
and feed images to our vision program.

One of the greatest challenges with our
simulation utility was accessibility for team
members as the entire package needed to run in
an Ubuntu environment with ROS. With the
processing requirements of Gazebo, running the
simulation in a virtual machine proved too slow
to be useful if not impossible. On Windows, we

investigated using Windows Subsystem for
Linux (WSL), especially with the release of
WSL2. This worked better than a virtual machine
but was still difficult to set up and did not
support Blender. The best solution was a pure
Ubuntu desktop environment, but we wanted to
avoid installing a new operating system on all
our members’ computers. The solution was to
use Amazon Web Services (AWS) and host the
simulation in the cloud. Instances could be spun
up in less than five minutes and any member
could access the simulation environment over
Secure Shell Protocol (SSH) and an Xserver for
graphics forwarding. For some computers,
Xservers were not an easy option so we also
added a Virtual Network Computing (VNC)
server client system and a minimal desktop to
our AWS simulation environment so that anyone
could access them.

III. EXPERIMENTAL RESULTS

The COVID-19 pandemic forced us to
modify some of our testing procedures in order
to facilitate social distancing practices. The
limited accessibility of facilities also reduced the
volume of testing that we were able to achieve.
To account for this, we simplified the design of
our AUV and relied on testing our software in
simulation. Most in-water testing for Huron was
conducted in the University of Michigan’s
Marine Hydrodynamics Lab (MHL).

1) Leak Testing: Before conducting in-water
tests of the full vehicle in the MHL, we
employed a vacuum pump to test for leaks. Even
if this test did not show the presence of a leak,
we still submerged the AUV in a sink in the
Wilson Student Team Project Center to verify the
results of the vacuum pump test. During in-water
testing, we relied on our leak sensor to alert us of

Michigan Robotic Submarine | 8

an unforeseen leak and placed a piece of paper
inside of the acrylic enclosure to determine
where water was entering the enclosure. If a leak
was detected, the leaking area would then be
fixed and the enclosure would be tested again for
water tightness.

2) Torpedo Launcher: Because the aiming
system has not been completed due to challenges
related to COVID-19 and prioritization of the
gate and buoy tasks, tests of the torpedo launcher
focused on the release mechanism. The barrel of
the launcher and torpedo itself were initially
3D-printed to validate the functionality of the
design. Due to the force created by the spring
decompressing, the final launcher will be
machined out of aluminum to make it sturdy
while keeping it relatively lightweight. Machine
shop closures prevented this version of the
launcher from being completed. After finishing
the manufacturing of the launcher, we plan to test
it underwater to measure launch velocity, launch
trajectory, and travel distance.

3) Gripper: As the gripper is still in the
design phase, we have not yet performed any
experimental tests. In the future, we plan to
3D-print its end effectors in order to verify that
they open and close expectedly before
incorporating a linear actuator.

4) In-water Testing and Simulation: In-water
testing was conducted at the MHL with social
distancing protocols in place. We connected to
the AUV via an ethernet tether to enable us to
control the AUV and make quick changes to our
code as needed. In order to capitalize on the
limited time we had, we formalized test plans
that detailed each test we aimed to complete
along with the procedure and expected results in
advance of each session. Additionally, we created
test-specific programs to systematically and
consistently evaluate components of our software

and to simulate or “mock” parts of our software
that were still in development. For example, our
mock machine learning node used our compass
and dead reckoning estimates to place a virtual
gate at a consistent location in our pool. To
ensure we did not waste time debugging these
programs, we ran them in our simulation
environment prior to our in-person testing to
verify that they would behave as expected.

5) Object Detection Model Development:
The development of our object detection model
was delayed until the latter part of the year due to
access restrictions to our testing environment.
The inability to test led to a lack of training data
to begin training our model. Once we were able
to begin testing, we saved images from the
camera on the AUV to craft our training and
testing datasets. During each successive training
session, we captured additional images to add to
our model-training suite.

One of the main goals of our model was to
make it generally applicable. That is, we wanted
the model to detect objects in a variety of
locations and conditions. Thus, we made it a
point to gather images outside of our primary
training facility so we could diversify our
datasets. After training our first model, we found
that it accurately detected objects in our primary
testing facility with high confidence, but it was
not generalizable to other environments. There
was a large variance in confidence, making it
appear that Model 1 was overfitted to the training
data (which largely consisted of images from our
primary testing facility). We expanded our
training dataset for the model iterations that
followed by capturing a variety of additional
images, resulting in significant improvements in
model generalizability. The increase in
generalizability is reflected in a 20% median

Michigan Robotic Submarine | 9

confidence gain, and our full results can be found
in Appendix E.

6) Hydrophone: As a critical component to
completing our targeted torpedo task, we knew
that testing our hydrophone system would be
vital. However, due to shipping and
manufacturing delays, chip shortages, and
COVID-19 restrictions on our facilities, we faced
significant delays in developing our custom
PCBs. With limited test time available, we
documented plans and results for continuity
testing and testing of the digital interfaces. In the
future, we will use our oscilloscope and signal
generator to test our analog components.

IV. CONCLUSION

Despite a year of challenges, Michigan
Robotic Submarine has worked hard to design,
build, and test an effective AUV. Our mechanical
team designed our chassis to be modular and
easy to manufacture. The software team took a
similar approach and developed a robust and
flexible architecture ready for future expansion.
Additionally, the software team iterated through
five machine learning models to optimize for
diverse environments. With this development and
research, we have set the framework for superior
iterations of our AUV.

ACKNOWLEDGEMENTS

The Michigan Robotic Submarine team would
like to thank our sponsors for their support:
University of Michigan College of Engineering,
Keysight, Parker Hannifin Pneumatic, Boeing,
University of Michigan CSE Department,
General Atomics, Molex, Wayfair, Ford,
Raytheon, UTS, GIGAVAC, Beagle Board,
Ewert Energy Systems, and Alro. In addition, we
would like to thank our advisor Dr. Katie
Skinner.

We are greatly appreciative of the Marine
Hydrodynamics Lab and Wilson Student Team
Project Center facilities for hosting our team and
supporting our endeavors.

We are also thankful for hydrophone data
provided through the new RoboNation data
sharing program.

REFERENCES

[1] Joseph Redmon and Ali Farhadi,
“YOLOv3: An Incremental Improvement,”
arXiv:1804.02767 [cs.CV], 2018.

[2] Andrew Awad, Ben Manley, Matthew
Shannon, Michael Yufa-Zimilevich,
“Feature and Weight Pruning in YOLOv3,”
Not Published, 2021,
https://drive.google.com/file/d/1lhxxnq7U1
FCWXwVz6KLV6QWGGYlDjKWF/view
?usp=sharing.

Michigan Robotic Submarine | 10

Appendix A: Component Specifications

Component Vendor Model/Type Specs Cost (if new) Status

Buoyancy Control N/A N/A N/A N/A N/A

Frame Custom Custom 6061 Aluminum $432.00 Installed

Waterproof Housing Blue Robotics 8” Series 11.75” Cast
Acrylic

$164.00 Installed

Cable Penetrators Blue Robotics Potted cable
penetrators

25mm long
M10x1.5 for 6mm
cable

$100.00 Installed

Thrusters Blue Robotics T200 w/
Propellor

7-20V $1074.00 Installed

Motor Control Blue Robotics Basic ESC 7-26V $172.00 Installed

High Level Control Custom Captain ROS-based N/A Installed

Actuators DigiKey Tubular
Solenoid STA
Pull 1x1

24V DC 6.2W $30.60 Purchased

Battery Blue Robotics Lithium-ion
Battery

14.8V, 18Ah $350.00 Installed

Converter N/A N/A N/A N/A N/A

Regulator Blue Robotics Power Supply 5V 6A $22.00

CPU Nvidia Jetson Nano Quad-core ARM
A57 @ 1.43 GHz,
4 Gb RAM

$110.00 Installed

RaspberryPi Raspberry Pi
3B

1.4GHz 64-bit
quad-core, 1Gb
RAM

$35.00 Installed

Internal Comm Network Open
Robotics

ROS Kinetic N/A Installed

External Comm Interface - Ethernet - - Installed

Compass PixHawk PX4 Accel/Gyro:
ICM-20689 with
Magnetometer

$257.00 Installed'

Inertial Measurement Unit
(IMU)

PixHawk PX4 MPU6000 9-axis (see above) Installed

Michigan Robotic Submarine | 11

Doppler Velocity Log
(DVL)

N/A N/A N/A N/A N/A

Vision Stereolabs ZED2 stereo vision,
ROS, depth
detection

$449.00 Installed

Acoustics Aquarian
Audio

H1C
Hydrophone

omnidirectional,
no amplifier

$139.00 Purchased

Algorithms: vision miniYOLOv3 Installed

Algorithms: acoustics custom (see
Hydrophone -
algorithms
section)

Installed

Algorithms: localization and
mapping

N/A N/A N/A N/A N/A

Algorithms: autonomy Custom

Open source software OpenCV

Team Size
(number of people)

24

Expertise ratio
(hardware vs. software)

6 mechanical, 13 software, 3 media, 2 business

Testing time: simulation 20 hours

Testing time: in-water 40 hours

Inter-vehicle
communication

N/A

Programming Language(s) Python

Table. A-1 Components

Michigan Robotic Submarine | 12

Appendix B: Outreach Activities

Michigan Robotic Submarine planned to assist the University of Michigan's Department of Naval
Architecture and Marine Engineering (NAME) with their annual SeaPerch competition for middle and
high schoolers in the greater Ann Arbor area. However, this in-person event was canceled due to the
COVID-19 pandemic.

In the future, we plan to assist with this event as well as other outreach events through the NAME
department.

Additionally, we participated in the RoboNation Data Sharing committee with one of our members
joining the initial group. Through piloting the program, we provided feedback and input on the
program and how it would provide the best value to teams.

Michigan Robotic Submarine | 13

Appendix C:

Fig. C-1 Hydrophone digital and analog signal processing chain

Michigan Robotic Submarine | 14

Appendix D: Hydrophone Simulation Results

Fig. D-1 Simulation results calculating corresponding RMS value of delay

Fig. D-2 Simulation results of corresponding offset angle of the RMS

Michigan Robotic Submarine | 15

Appendix E: Object Detection Model Statistics

Fig. E-1 Model Progression Box and Whisker of the entire test set (80% MHL - 20% other)

Model 1 Model 3 Model 4 Model 5 Model 5 WB

Minimum 0 0 0 0.02 0.11

Q1 0.2225 0.0125 0.18 0.28 0.36

Median 0.38 0.16 0.33 0.42 0.45

Q3 0.8075 0.335 0.455 0.4575 0.49

Maximum 0.94 0.49 0.49 0.51 0.53

Table. E-1 Model Progression Statistics for the entire data set (80% MHL - 20% other)

Michigan Robotic Submarine | 16

Fig. E-2 Model Progression Box and Whisker of just the MHL images

Model 1 Model 3 Model 4 Model 5 Model 5 WB

Minimum 0.05 0 0 0.19 0.22

Q1 0.3425 0.0775 0.2175 0.36 0.3675

Median 0.595 0.22 0.375 0.435 0.47

Q3 0.8925 0.3975 0.46 0.465 0.5

Maximum 0.94 0.49 0.49 0.51 0.53

Table. E-2 Model Progression Statistics for MHL images

Michigan Robotic Submarine | 17

Fig. E-3 Model Progression Box and Whisker of just the non MHL images

Model 1 Model 3 Model 4 Model 5 Model 5 WB

Minimum 0 0 0 0.02 0.11

Q1 0.075 0 0 0.155 0.1775

Median 0.165 0 0.2 0.255 0.365

Q3 0.2225 0.045 0.2425 0.2975 0.385

Maximum 0.23 0.15 0.25 0.32 0.4

Table. E-3 Model Progression Statistics for non-MHL images

