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Abstract—Michigan Robotic Submarine is a student project
team at the University of Michigan, now in its second year partici-
pating in the RoboNation RoboSub competition. Our autonomous
underwater vehicle (AUV), Erie (see figure 1), is a complete
overhaul of our previous design with an emphasis on modularity
for mounting additional components and maneuverability when
operating. We accomplished this by focusing on a one-piece hull
as a main body with other mechanisms attaching directly to it.
There are three tasks we focused on for this year’s game strategy:
the buoy task, gate task, and surfacing task. These tasks informed
our design decisions and the team’s focus for the past year. The
mechanical subteam was responsible for designing the main hull,
thruster mounts and electronics chassis. The software subteam
designed various custom circuit boards for the electrical system
and designed a hydrophone system. They also upgraded their pre-
existing system architecture to have more flexibility when running
navigational programs, upgraded our deep learning models for
detection of multiple objects, and implemented a more advanced
computer vision system. We developed more robust testing tools
and procedures for off and on board testing which included
frequent in-water testing on the University of Michigan campus.

I. COMPETITION STRATEGY

As a second year team, this year will be the first time that
the Michigan Robotic Submarine team is participating in the
in-person competition. As such, the team’s main focus was on
creating a reliable system that could complete tasks outside of
our primary testing environments. In order to accomplish this,
we designed and built our new submarine, Erie, to overcome
the shortcomings of our previous vehicle, Huron. In particular,
Huron posed difficulties in producing the desired movements
during testing due to its profile and weight distribution, which
made it difficult to test our algorithms’ effectiveness. In
terms of the competition, Huron’s lack of reliable mobility
was problematic because competing in-person requires more
precision for locating and completing tasks. This informed
our mechanical design criteria as we sought to make Erie
more maneuverable. On the software subteam, we decided
to focus on creating a more robust computer vision system
and designated our hydrophone system as a stretch goal. As
such, we centered our attention on tasks with large visual
components such as the Choose Your Side (Gate) and Make
the Grade (Buoy) tasks with the Cash or Smash (Surfacing)
task as a reach goal.

A. Choose Your Side (Gate)

Our main priority was developing the software to consis-
tently complete the gate task, as it is required to qualify for the
competition. Because the gate’s side posts consist of bright,
straight lines which stand out underwater, the gate is easily
identifiable using computer vision. As such, we rely on a

deep learning model to visually identify the gate to inform
our navigational algorithm on the heading of the gate relative
to our AUV. While we created a model which identified the
gate fairly accurately, we noticed while in-water testing that
the model had biases that made it difficult to detect the gate
from certain angles or depths. In response, we made an effort
to collect more diverse image sets with which we trained
our model. Since we already had fairly accurate identification
of the gate, we had the bandwidth to add detection of the
bootlegger and G-man images for the style points. Our vision
system is limited by the GPU performance so we also adjusted
our navigation algorithm to accommodate potential latency in
the identification of the gate.

B. Make the Grade (Buoy)

The second task we focused on was bumping the buoy. This
was a realistic goal for the team since the systems and general
navigation needed for the task are similar to the systems
needed to achieve the gate task as they both involve centering
the AUV upon visually-detected objects. The first challenge
was detecting when the AUV has actually bumped the buoy
as we lose visual range of it before the AUV touches it.
We decided to use the output from our Attitude and Heading
Reference System (AHRS) as we attribute abnormalities in our
movement to the collision with the buoy. The second challenge
was locating the buoy. In order to accomplish this, we added
a camera to the bottom of Erie. We then created a new vision
system for identifying the edges of the path marker which
we can use to calculate the AUV’s relative heading. We can
then use the heading to navigate to the buoy task from the gate
task. While there was added complexity, we expected this task
to be doable given the framework we had started developing
in the previous year and our experience in developing vision
systems.

Fig. 1. CAD of our 2021-2022 AUV, Erie.
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C. Cash or Smash (Surfacing)

This last task was a smaller focus for the team, as the acous-
tic navigation needed to locate this task is more complex and
less developed than our vision system. Our hydrophone system
made progress as we created and tested custom band-path
filters for filtering the input received from our hydrophones.
We would like to be able to accomplish tasks related to the
pinger, which tend to have higher point values. However, the
main focus for the team has been the vision system, as they
are needed to complete the qualifying task. Since the gate
and buoy tasks are attempted first, there is no detriment to
the team attempting the surfacing task. Surfacing within the
octagon would yield us more points, but even if the attempt
is unsuccessful, there are no other tasks that we would need
to complete.

II. DESIGN CREATIVITY

A. Mechanical

This year, our mechanical team primarily focused on re-
designing the hull of our AUV. After testing with our previous
sub (Huron) extensively, we identified several clear points of
improvement that should be made when designing the new
hull. Namely, we prioritized camera visibility, leak-proof relia-
bility, electronics accessibility, and maneuverability. Increasing
camera visibility entailed eliminating the use of epoxy to aid
in sealing the hull, which often obscured part of the camera’s
field of view. To do this, we implemented a dual face seal o
ring system at both the interface between the front window
and hull and the interface between the top window and hull.
We also sealed the gap between the lid and main hull with
an o-ring extending around the outside of the top of the main
hull. This dramatically decreased the chance of our sub leaking
from last year’s design and, in turn, allowed us to avoid using
epoxy at any of the sealing points, which improved camera
visibility

The main enclosure on Huron was a cylinder sealed on
either side by end caps with circumferential o-rings. The only
way to access the electrical components was to remove one of
the end caps, which was fairly laborious. Our new hull design
consists of a large rectangular compartment connected to a lid
via hinges on one side of the vehicle in figure 2. When the lid
is lowered in the closed position, latches around the outside
of the sub are closed to ensure that the lid and hull form a
tight seal.

This design made accessing electrical components inside the
hull significantly easier because opening the hull only involved
undoing the latches and pulling the lid up on its hinges. It also
makes it easy to view the status lights of the electrical system
without opening the lid which is useful while testing, see figure
3.

To address the maneuverability design criteria, we designed
our sub to accommodate eight thrusters instead of the six we
had last year. Having this amount of thrusters allowed us to
achieve all six degrees of freedom. One of the issues that
Huron had was that it would pitch undesirably when moving

Fig. 2. CAD of the hinges which connect the lid to the hull.

Fig. 3. CAD of top-view of Erie.

forwards or sideways. To avoid this issue on the new sub,
we designed thruster mounts that would allow the horizontal
thrusters to slide up and down. Thus, we could fine-tune the
exact positions of the horizontal thrusters in order to make the
sub move straight when the thrusters are activated.

One of the strengths of Huron was that it could accom-
modate some modularity in the sense that new components
could be implemented to the sub in the future. To incorporate
a similar trait on the new sub, we designed a plate that sits
directly below the main hull and contains mounting locations
for future sensors, such as a Doppler Velocity Log (DVL),
to be mounted. We performed stress analysis on the plate to
make it as lightweight as possible without deforming under
the large weight of the hull.

B. Electrical

a) Power Distribution: With our increasing number of
sensors and power usage of our computers, we decided it
would be necessary to upgrade our power delivery system.
This would not only ensure our current setup could be fully
powered but also that future additions would be able to receive
sufficient power. Additionally, with a new setup, we could use
more secure and consistent connectors throughout our power
delivery. For our new power distribution board, we used an
off the shelf Pololu 5V 15A Step Down Regulator as our DC-
DC converter which would supply up to 75 W to our system.
We mounted this to a custom PCB distribution board using the
solid Molex MicroFit 3.0 connectors to distribute power to our
components, along with some extra slots we could populate
later on.
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b) Sensor Optimization: Last year we used the Pix-
Hawk’s built-in IMU to measure our orientation. However,
this IMU only provides its data message at 20 HZ, and it is
difficult to access since it is part of the MAVROS stack. So,
we purchased and integrated a Spartan AHRS, which provides
data at 30 HZ and is easily accessible over the serial bus.
This sensor leverages the AdaptNavTM filtering algorithm to
provide quality data. This enabled us to integrate and control
our heading much more reliably.

We also researched sensors to add to the AUV, particularly
a Doppler Velocity Log (DVL) and sonar. Our advisor, Dr.
Katherine Skinner, lent us a sonar sensor which we experi-
mented with in-water several times. However, we ultimately
decided that we didn’t have the bandwidth to add additional
sensor systems for this year’s AUV given our focus on the
computer vision and hydrophone system development.

C. Software

a) Controls and Architecture: Our system utilizes the
Robot Operating System (ROS) framework to facilitate com-
munication between sensors and our navigational algorithms.

The largest development to our architecture was the adop-
tion of the state machine pattern. In this pattern, a given ROS
node can have some set of states, each with some distinct be-
havior, and transitions between these states. Explicitly naming
and referencing these states in the code allows us to easily
reason about the node’s behavior. The most prominent usage
of this pattern in our code is in the high-level task planning
logic. Previously we had a designated ROS node which started
each task individually, but we found that this paradigm made it
difficult to assess when a task had been successfully completed
and when to move onto the next task. Instead, a single node
now contains a state machine and performs both the gate and
buoy tasks. When completing the Gate Task, the robot will first
scan for the gate. Once the gate is seen, the robot will begin
to approach the gate. If at any time the robot is sufficiently
confident that it cannot see the gate, it will transition back to
the scanning state. If instead it sees one of the images on the
gate, it will transition to approaching the image. Finally, once
it believes it has gotten close to the gate, it will transition to
a crossing state. A full state machine diagram, including the
transition to the buoy task, can be seen in Appendix A. By
breaking the task into distinct phases, we are better able to
debug and reason about the robot’s behavior. This pattern also
serves as a framework for approaching more complex tasks in
the future as it allows for the AUV to re-attempt tasks.

Another aspect of our codebase we sought to streamline was
our usage of third-party libraries. We found that directly using
the interfaces and boilerplate code of common libraries, such
as MAVROS which we use to interface between our flight
controller and algorithms, made our code less readable and
harder to maintain. To solve this problem, our team wrote
“adaptor” classes to serve as a layer of abstraction to improve
readability and maintability of our codebase. One example
is a MotorController module to interact with MAVROS. The
default MAVROS interface requires setting six values (one for

each degree of freedom) in an arbitrary order. Our module, on
the other hand, allows us to only name the values we wish to
change in any given ROS node, leading to clearer and more
declarative code. Another example is the ROS PID library that
we use for the various PID controllers used for navigation. The
library requires publishers and subscribers on multiple topics,
which must be constructed through boiler-plate code. To solve
this problem, we wrote an abstraction which allows us to
construct all of these in a single line of code and declaratively
set parameters as necessary. By making use of abstractions like
these, our team is building a strong foundation of readable and
maintainable code which can be easily re-used.

b) Deep Learning: This past year we made significant
advancements with our deep-learning based object detection
systems. We upgraded to the newly released YOLOv5 from
the now deprecated Tiny YOLOv3 and implemented real-time
detection for multiple different objects.

YOLOv5, meaning You Only Look Once version 5, is an
off-the-shelf machine learning model that was perfect for our
needs. It is lightweight and fast, ideal for storing and running
in real time for detection on our sub. It also is very easy
to train, requiring only labeled images and a configuration
file. Our previously used version of this model, YOLOv3,
was large and slow to run, only processing around 1 image
every 2 seconds. Upgrading to the newer version, along with
refactoring the code that analyzes the model’s output, allowed
us to increase this frame rate to around 5 images per second.

Another reason we upgraded to YOLOv5 this year is that
is utilizes the PyTorch framework instead of a framework
called Darknet. PyTorch is an open source machine learning
framework and is an industry standard for this type of work. It
is very easy to use, and its established reputation means that
there is lots of helpful documentation and greater usability
compared to our previously used framework of Darknet. With
this change, we were able to train our models in a different
way as well. We now utilize a service called the Great Lakes
Computing Cluster for all of the computational power used
generating the model. Access to this service was granted from
being a University of Michigan group, and it allows us to
abstract away the architecture we train on and get our resulting
model in a fraction of the time.

An additional important change we implemented was the
ability to detect multiple classes of objects. Prior to this
year, we only had the ability to detect the gate object. For
competition this year, we found it necessary to be able to
recognize the gate, bootlegger, G-man, badge, and gun objects
to successfully complete the tasks we had in mind. We needed
to vastly expand our data set to achieve this, not only adding
images for all of the new objects, but also new gate images
since our old gate images did not have pictures hanging from
the gate like it has this year. Even in past years, we believe the
number of images in our data set was too small, over-fitting
the model to our test setting. Continuing to expand our data
set into thousands of images per object type is still a goal
for the future, as our model will perform well in different
environments and will be able to detect better from all sorts
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of angles.
c) Computer Vision (CV): Additionally, we expanded our

computer vision toolkit to use classical CV methods which are
generally computationally less expensive than deep-learning
models. We applied a Canny edge detection algorithm as well
as color threshold masking to detect markers in the pool. The
first step of Canny is to smooth the image using a Gaussian
kernel, then we convolve the Sobel kernels over the image to
get the edge gradients. This on its own does get us the edges,
however, after some experimentation, we determined we were
reading in too much noise. This is where the rest of the Canny
algorithm was helpful. Using the two x and y gradients from
the Sobel Kernels, we were able to get the angle of the gradient
of each pixel. This is helpful when suppressing the edges so
they are thinner. Ideally we should get thin lines for the edges
so we are only getting the exact border of the way point. We
used a max threshold that filtered pixels by weight, if the edge
was deemed strong it was left in the final image. The stages
of the edge detection can be seen in Figure 4 below.

Fig. 4. Classical CV path marker detection.

III. EXPERIMENTAL RESULTS

As the availability of our testing facilities and team members
were sometimes limited due to the COVID-19 pandemic, we
devised methods to more efficiently develop and test software
both on and off the AUV.

a) Off-Board Software Testing: In order to write, execute,
and test our software off of the AUV, we developed Docker
images that emulate our companion computer, PixHawk flight
controller, and the MAVROS environment. This workflow
allows anyone on our team to setup our development envi-
ronment on their computer in just a few steps. In general, we
tested the logic of our software off-board of the AUV and
reserved in-water testing for collecting data to improve our
vision system or test the physical results of the algorithms
once they had been tested in simulation.

To visualize the output of our software both in Docker and
on the real AUV, we created visualizations using RQt, a ROS

dashboard library. We leveraged RQt to graph position data
and dynamically tune control parameters, allowing for easy
incremental testing.

We also developed a Unity simulation that communicates
with our software emulation in Docker via the ROS-TCP-
Connector package. We wrote Unity C software to simulate the
movement, sensor data, and vision data of the AUV with noise.
The simulation features to-scale competition object models
created by Team Inspiration, allowing us to evaluate our soft-
ware’s behavioral logic within the competition environment
[1].

Fig. 5. Testing the gate task logic using Docker and Unity.

b) In-water Testing: Almost all in-water testing was done
at the Marine Hydrodynamics Laboratory (MHL) with smaller
tests being completed in a water tank inside of the Ford
Robotics Building at the University of Michigan. During test-
ing sessions, the AUV was connected to our base-station using
an ethernet tether, allowing us to easily edit code or change
tests. During the school semester, we had about one day per
week in which we were able to test inside of the MHL, this
number increasing once the semester had ended and students
were available more frequently. Before each testing session,
test plans were premade and followed to promote a successful
use of time. The value that was placed on each task in the plan
was ultimately situational, depending on what the team felt
was most necessary at the time. In addition, various programs
were written that tested specific functions and systems. These
test-programs were often very simple and pretested in the
water tank at the Ford Motor Company Robotics Building
to ensure progress at the MHL. Examples of these programs
include basic depth control, in-water stability, and orientation
control. It is worth noting that, while these programs were
written to be simple and easily adjusted, they were necessary
to the functionality of the submarine. For example, the most
problematic was stability control, which took a large amount
of effort to incorporate. While able to ignore this program in
many of the tasks, it was also necessary to finish because
the testing submarine had an awkward natural orientation,
which disrupted its path over long distances. In contrast, most
task programs were tested with both the depth and orientation
controls engaged because of their higher consistency. After
the end of the school year, there has also been a shift in the
testing requirements due to our competition submarine body
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being finished. This meant that the problems we experienced
on our testing sub were now less exaggerated.

c) Deep Learning Model Training: Last year our object
detection testing focused primarily on developing a system
that could perform in any underwater condition regardless of
lighting and background color. This year with the introduction
of four additional classes that we could identify and continuing
to utilize our gate data set from last year, it did not make
sense to compare our previous models to this years. Instead
as we expanded our data set throughout the year we examined
the accuracy of our model on a predefined test set containing
complex situations like the ones seen in figures 6 and 7.

Fig. 6. Buoy inference output from YoLo v5 model.

Fig. 7. Gate inference output from YoLo v5 model.

To train machine learning models faster so that the recent
model parameter changes could be observed quickly, we
switched from training models on Google Colab to doing so
on a high performance computing cluster called the Great
Lakes Cluster. The initial upload and subsequent updates of
the training data, test images, and the Yolov5 program were
automated through a script using git version control and Linux
permission commands. The label creation and organization
was handled by a Python script that reads a Labelbox export
file.

Additionally, the machine learning model training process
on the Great Lakes Cluster was automated using a series
of scripts. These scripts initialized a Python virtual environ-
ment, installed dependencies for Yolov5, initiated PyTorch for
Yolov5 inferencing, and read and handled Yolov5 machine
learning model arguments from the designated text file. Using
the proper arguments and Yolov5, the scripts trained the
machine learning model, ran inferencing, converted weights,

and dynamically organized Yolov5’s end weights, model eval-
uations, and results. After, Globus was utilized to transfer
result and weight files to a laptop for submarine usage.

Furthermore, the Slurm Workload Manager framework was
utilized to allocate the proper number of threads, GPU, and
CPU memory for training the machine learning model. We also
incorporated the option to utilize Slurm’s job arrays, which
allows for models with different parameters to be trained
concurrently for efficient model comparison. The output and
error logs were stored in a dynamic sectioned file logging
system that also supports multiple logs from job arrays.

By training models on a high performance computing
cluster, not only was file management easier and the training
processes streamlined outside of the abnormal Google Colab
environment, but models could be trained at the same time,
and each was trained 324% faster than if it were to be trained
on Google Colab.
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APPENDIX A
TASK STATE MACHINE

APPENDIX B
OUTREACH EFFORTS

Michigan Robotic Submarine assisted the University of
Michigan’s Department of Naval Architecture and Marine
Engineering (NAME) with their annual SeaPerch competition
for middle and high schoolers in the greater Ann Arbor area
in March. The team showcased our work, talked to students,
and helped with running the event.

In the future, we plan to assist with this event as well as
other outreach events through the NAME department.

Additionally, we participated in the RoboNation Data Shar-
ing committee with one of our members joining the initial
group. Through piloting the program, we provided feedback
and input on the program and how it would provide the best
value to teams.
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APPENDIX C
COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if new) Year of Purchase
Buoyancy Control Blue Robotics R-3312 Subsea Buoy-

ancy Foam
N/A $135.00 2022

Hull American Tooling &
Prototype

Custom 6061 Aluminum $3250.00 2022

Cable Penetrators Blue Robotics Potted cable penetra-
tors

25mm long M10x1.5
for 6mm cable

$120.00 2020

Thrusters Blue Robotics T200 w/ Propellor 7-20V $1,074.00 2020
Thruster Mounts Custom N/A 6061 Aluminum N/A N/A
Motor Control Blue Robotics Basic ESC 7-26V $172.00 2022
High Level Control Custom Captain ROS-based N/A N/A
Battery Blue Robotics Lithium-ion Battery 14.8V, 18Ah $350.00 2022
Converter N/A N/A N/A N/A N/A
Regulator Pololu Step-Down Voltage

Regulator
5V, 15A $59.95 2022

CPU Nvidia Jetson Nano Quad-core ARM A57
@ 1.43 GHz, 4 Gb
RAM

$110.00 2021

RaspberryPi Raspberry Pi 3B 1.4GHz 64-bit quad-
core, 1Gb RAM

$35.00 2020

Internal Comm Net-
work

Open Robotics ROS Kinetic N/A N/A

External Comm Inter-
face

- Ethernet - - N/A

Compass PixHawk PX4 Accel/Gyro:
ICM-20689 with
Magnetometer

$257.00 2020

Inertial Measurement
Unit (IMU)

PixHawk PX4 MPU6000 9-axis (see above) (see above)

Doppler Velocity Log
(DVL)

N/A N/A N/A N/A N/A

Vision Stereolabs ZED2 stereo vision, ROS,
depth detection

$449.00 2020

Acoustics Aquarian Audio H1C Hydrophone omnidirectional, no
amplifier

$139.00 2021

Algorithms: vision N/A miniYOLOv3 used to train convolu-
tional neural network

N/A 2022

Algorithms: acoustics N/A custom (see
Hydrophone -
algorithms section)

N/A N/A N/A

Algorithms: localiza-
tion and mapping

N/A N/A N/A N/A N/A

Algorithms: autonomy N/A Custom N/A N/A N/A
Open source software N/A OpenCV Computer Vision N/A N/A
Open source software N/A Andy Ze ROS PID PID Control N/A N/A
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