
NYUAD Robosub - 1

NYUAD Robosub: Automated Underwater Vehicle
Adaptation and Control

Minh Quan Nham, Rami Richani Hamdan, Kirubel Solomon Tesfaye, Aira Khaliq, Sherifa Yakubu,
Julio Zuazola, Lukelo Luoga, Obed Morrison, Baoyuan Zhang, Aya El Mir, Ibrahim Nayfeh

Abstract - NYUAD Robosub is a team of
undergraduate students at NYU Abu Dhabi
developing a fully autonomous underwater
vehicle to compete in Robosub for the first time.
Besides a detailed review and analysis of past
competition documentation, our team focused on
creating simple but modular and effective
subsystems that contribute to the overall
realization of the robot in a short time. From
mechanical design to electrical and software
development, we chose and also created products
that can enable our AUV to complete its
missions. This paper will highlight our
strategies, system architecture, and designs in
each subsystem that were essential for us to have
a complete and fully autonomous vehicle. In
addition, it will underscore the developments,
simulations, and experiments that we have done
that will allow us to complete the tasks in the
competition.

I. COMPETITION STRATEGY
Since it is our team's inaugural competition and

we are competing against much more sophisticated
teams with years of experience, it became our
primary priority to research past reports thoroughly
and take notes of previous teams’ strategies,
technology, and drawbacks to form our knowledge
background. Our key goal was modularity: in our
small team, each person was assigned a specific
subsection pertaining to their strong points,
allowing each of us the ability to deeply research &
develop in our respective categories. The
modularity goal has been crucial to allow seamless
integration, and for our work to be eventually
assembled into a working robot.

As we also started late into the spring semester,
our focus was on working with off-the-shelf

components and software, only developing new
concepts whenever necessary. Our literature review
of past reports helped greatly in giving us a head
start on available technology, but we also
considered a large selection of commercially
available solutions to find those that best fit our
needs. With our current development, we have
planned to attempt all the tasks in the competition.
We determined that object detection, high-level
control of the robot, and acoustic pinger detection
as some of the focal points needed to guide us and
complete the tasks. Initially, we spent a lot of time
figuring out how the general architecture of our
sub-systems should look like, which algorithms and
open-source software to use such as for vision,
acoustics, and for achieving a fully autonomous
run. While doing this, we identified products out on
the market that best fit our interest, which ones
could be modified, and which ones needed to be
made from scratch, such as the torpedo. Throughout
the development process, we have been using
simulations to test for different scenarios and
optimization before testing in the pool.

II. DESIGN CREATIVITY
Our team was mainly divided into three

sub-teams (mechanical, electrical, and software)
with each sub-team also having subdivisions. Each
sub-team has come up with simple and effective
plans that would make our complete system fully
functional and ready to complete the tasks.

A. Mechanical Subsystem
1) Frame: We decided to work with the

BlueROV2 as our base robot as it is one of the most
successful commercial ROVs to date. Due to our
late entry into the competition, it also helped us
move beyond designing the frames and mechanical

NYUAD Robosub - 2

layout, which normally takes up a lot of time. The
ballast system also helped us in trimming the
vehicle with the newly added components.

2) Central Enclosure: With our camera and
computational units (Jetson TX2, Raspberry Pi)
running at full speed heat became a serious issue.
We decided to substitute the traditional transparent
container for an aluminum one as a huge heatsink,
taking advantage of the ambient water temperature
to cool the system. Extra fans were also fitted in the
chamber to improve convection.

Fig. 1. 3D model of the AUV

3) Camera Housing: We identified early on that
the benefits of having a stereo camera exceed its
drawbacks, and focused on finding a watertight
housing for the camera. Existing off-the-shelf
housing solutions, however, were too large and
clunky for the BlueROV2. We made use of the
traditional oblong shape of stereo cameras to
develop a racetrack-shaped transparent window,
fitted with a custom O-ring to make it watertight.
The custom housing comes with a disadvantage in
the field of view, as a curved surface would allow a
wider range for the cameras. However, the ease of
manufacturing a flat plate instead of transparent
domes exceeds its drawbacks. The housing also
allowed some more space for the Jetson and
additional components to be fitted.

4) Torpedo Launcher: Our torpedo launcher had
to be designed from scratch. Before starting, a
simple simulator was built on Geogebra to test the
best conditions under which the model could be
planned to be refined later. The movement source

Fig. 2. Exploded-view model of torpedo in launcher

was chosen to be a spring-loaded mechanism
activated by a solenoid rather than using a servo
motor to reduce weight and the energy needed to
activate it. The torpedo itself was projected to have
a streamlined exterior, an internal chamber that
allowed for a density balance using a water
chamber, and a nylon screw to control its size.

B. Software Subsystem

Fig. 3. Overall system architecture

1) ROS: The goal of modularity was met
chiefly by our use of the Robot Operating System,
which allowed submodules to be connected in a
context-agnostic manner. This aspect was essential
as we experiment with different camera types and
software-in-the-loop schemes. Task planning,
controls, and pinger echolocation were
implemented using ROS nodes and can be started
all within a launch file.

2) Autopilot: In order to avoid unnecessary
reimplementation of Kalman filters and PID
controllers in ROS, we developed on the ArduSub
system as it incorporates both the traditional tools
as well as support for underwater-specific
components, such as the pressure sensor. Running
the EKF filter and PID position-velocity controllers
on the Pixhawk also helped alleviate the
computational burden put on the Raspberry Pi and

NYUAD Robosub - 3

the Jetson, allowing them to focus on other tasks.
The ArduSub system also has a great advantage in
that it supports the BlueROV2 natively, reducing
the need for us to customize and debug a new
frame.

To work efficiently with the ArduSub system,
instead of using the inflexible mavros package that
did not allow much customization and optimization
for our tasks, we chose to use the pymavlink library
to write custom Python ROS nodes that work with
both ROS and MAVLink. Although having a steep
learning curve, this allowed much better control
over the information sent by ArduSub as well as the
messages we send to the system. A ROS publisher
was written to send current pose information of the
Pixhawk as a relative frame to the world, and the
control nodes relied on this to form occupancy
grids, send precise location control, and transform
objects seen by the camera into the world frame.

3) SLAM: An issue we found with the ArduSub
system was that there was no precise control of the
position without extra add-ons like a GPS
(incompatible with our competition setting) or a
DVL (exceeding our price range). The newest
ArduSub version, however, allowed us to send a
custom velocity stream to the EKF filter via
MAVLink; this led us to implement localization
algorithms and send changes of pose data to the
Pixhawk. The RoboSub competition setting this
year was a large factor in our decision to use visual
and inertial SLAM; a clear pool with marked walls
would allow much better feature detection than a
murky, deep open-water pool. The specific SLAM
algorithm chosen was ORB-SLAM 3, which
provided visual-inertial SLAM with loop closure
while providing global optimization and extensive
library support. [2]

4) Controls: With the aforementioned SLAM in
place, ArduSub enabled precise position control.
We made sure to only move the ROV only a small
distance at a time to avoid losing track, which
would cause detriment both to the SLAM algorithm
as well as the ability of the Pixhawk to generate
local position data. After it is in place, the control is
simply commanding the Pixhawk to go to specific
locations. Tuning is done mostly in simulation, but

the provided PID gains for the BlueROV2 are
already close enough to meet our needs.

5) Path Planning: We evaluated many modern
obstacle-avoidance algorithms for path planning of
the ROV, and any-angle algorithms showed great
promise in their efficiency and adaptability to 3D
space. RRT-based algorithms are not very
well-optimized for 3D spaces and incremental path
planning, and subgoal-graph algorithms are nearly
impossible to generalize to 3D. We also looked into
A*-based algorithms such as Block and Field A*,
but they are both slow and inefficient in 3D space.
We settled on Lazy Theta* [1], an algorithm
descendant of A* that is very fast in 3D path
planning. For the algorithm, space was partitioned
into a 26-neighbors occupancy grid, and we used an
unordered set of 3D integer vectors to increase
speed and memory efficiency.

Fig. 4. Lazy Theta* navigation around the
prequalification task

6) Computer Vision: We evaluated a diverse
range of underwater computer vision architectures
in an attempt to curate a vision system capable of
recognizing obstacles despite underwater image
degradation. Due to image distortion underwater,
conventional OpenCV techniques were insufficient
in detecting objects. Therefore, we settled on using
machine learning algorithms that were compatible
with the OAK-D camera. We heavily relied on
DepthAI’s documentation for fulfilling the
aforementioned details. After comparing the
efficacy of YoloV3, YoloV4 tiny, and MobileNetV2
SSD [3][4], our team finalized MobileNetV2 SSD
for its speed in real-time object detection situations.
We also used neural inference in conjunction with a
depth map to determine object coordinates in 3D
space. Therefore, our computer vision architecture

NYUAD Robosub - 4

was not only able to detect and draw bounding
boxes around objects of interest but also undertook
their 3D localization.

C. Electrical Subsystem
1) Computational Units: With the powerful

OAK cameras, we decided that the Jetson TX2 is a
good tradeoff between power consumption and
computing performance for our needs. We added a
Raspberry Pi 4 to help with fast audio analysis and
miscellaneous tasks, while also incorporating
additional, application-specific boards as needed.

2) Power: We used a single battery to power up
the whole system. We decided to fit it into a second
water-tight tube at the bottom, which would be
connected to the main tube where all the other
components are found. We used regulators to
supply the required voltage and current to each
component. After much deliberation, we decided to
use a MOSFET with a lanyard switch as a kill
switch instead of using switches fitted to the AUV,
as they would require very close-range action if the
operators wanted to switch the AUV off.

3) Hydrophones: The hydrophones were placed
in a static non-planar array and connected to a
quad-channeled analog-to-digital converter attached
to an evaluation board. The board would send the
data to a processor, which would then communicate
with the Jetson and provide the necessary
information to properly navigate.

4) Communication Network: We integrated
ethernet and wifi to our system that were used not
only for completing the tasks but also modified for
testing purposes. As we have different devices, such
as the Jetson TX2, Raspberry Pi 4, and Pixhawk,
that need to run on the same ROS master, we used
ethernet to set them to the same network. An
ethernet splitter with four ports is used to connect
the wifi, Jetson, and Raspberry Pi. The other port is
occasionally used by the Fathom-X tether interface
board during testing procedures, for connecting
another device - most often a laptop outside the
water - to the ROS master. This gave us access to
the Jetson via SSH to monitor and control the ROS
master. After testing, we used the wifi hotspot to

communicate with the system whenever the ROV
surfaced from the pool.

5) Sensors: The Pixhawk Cube autopilot
provided us with three sets of IMU sensors that are
fused giving us enhanced accuracy with the
redundancy. Besides the IMU, we added a pressure
sensor and sonar ping for detecting the depth and
the bottom of the pool respectively. From the
pressure sensors available, we used the Bar30
pressure sensor since it was supported by the
ArduSub firmware. We decided to use a sonar
pinger to detect the bottom of the pool and avoid a
collision. For this, we created a ROS package that
can read and publish the depth and confidence
rating of the depth value as ROS topics, which can
be used for further applications.

III. EXPERIMENTAL RESULTS
Testing our ideas and designs has been an

important step to finalize our AUV. We have
focused on testing each of the subsystems
individually before testing the completed AUV
underwater. Simulations were continuously utilized
to assess and improve our designs. The last months
before the competition have been dedicated to pool
tests for us to complete our vehicle.

A. Mechanical Subsystem
The BlueROV2 has been used in previous

competitions, and its main components (enclosures,
ballasts, and turbines) showed promising results.
The turbines added to its upgrade have been tested
individually and worked similarly to the ones
previously used. The torpedo design has been tested
and the exterior design was hydrodynamic, even
with the uneven surface created while 3d printing.
However, the density adjustment revealed to require
precise control during the design process and
printing, and the fine-tuning to make the torpedo
neutrally buoyant was only possible after careful
balancing. The solenoid revealed itself waterproof,
but the locking mechanism is still under testing.
Once it is properly set, the marker dropper can be
made with a smaller torpedo that has the same
aerodynamic front with a thinner and more dense
design.

NYUAD Robosub - 5

B. Software Subsystem
1) Blender: For a machine learning model to

work successfully, the dataset must be accurate and
meaningful. To this end, we considered a variety of
simulation techniques - initially, we even
considered taking the pictures manually inside the
school pool. However, due to time and financial
constraints, Blender became the optimal choice.
Since Blender could facilitate the use of caustics
and diverse lighting environments, the renderings
obtained were varied and mimic reality closely. A
rendering of our pre-qualification gate being
detected is shown below.

Fig. 5. Rendering in Blender and detection of gate
using MobileNet

2) Gazebo: We have also identified early on
that a reliable simulation environment is
fundamental in developing our vision and control
algorithms, as developing the BlueROV2 while
submerged underwater is highly inefficient and
cumbersome. We utilized Gazebo with the UUV
Simulator [5] plugin for the simulation, as it has
been a proven platform used with success by
multiple teams in the past. With a fusion of
manufacturer-supplied integration of ArduSub SITL
with Gazebo [6] and a Github repository
implementing UUV Simulator capabilities for the
BlueROV2 [7], we produced a resilient,
physics-based simulation environment to test our
control and vision algorithms.

Fig. 6. BlueROV2 in the simulated environment
with filtered camera point cloud, downward and

forward-facing camera streams

C. Electrical Subsystem
We have tested the components that need to be

powered by the battery and the connections across
the components. All the components, such as the
thrusters, the Fathom tether interface, and the
Pixhawk are working properly. We have also set up
the network interface, such as among the Jetson,
wifi, Fathom-X tether, and external laptop for
monitoring purposes in testing. We were successful
in running ROS using multiple devices on the same
ROS master. The pressure sensor is integrated into
the autopilot through I2C and the sonar ping is also
publishing its data for further use.

IV. ACKNOWLEDGMENTS
NYUAD Robosub team would like to thank

everyone who supported us through our journey.
We would like to express our gratitude to our
university NYU Abu Dhabi, especially the
Engineering Design Studio, for providing us with
the necessary financial and material support for
building and testing our robot. We appreciate
NYUAD pool lifeguards for their assistance during
our pool tests. We would also like to offer our
deepest gratitude to our advisor Matthew Karau for
his guidance and technical support throughout our
journey. Last but not least, we want to thank
RoboNation for providing us with this opportunity
to explore our interests and develop our knowledge
in robotics.

NYUAD Robosub - 6

REFERENCES
[1] A. Nash, S. Koenig, and C. Tovey, “Lazy

Theta*: Any-Angle Path Planning and Path
Length Analysis in 3D,” AAAI-10 24th
Conference on Artificial Intelligence, 2010.
[Online]. Available:
http://idm-lab.org/bib/abstracts/papers/aaai10b.
pdf. [Accessed: 12-Jun-2022].

[2] C. Campos, R. Elvira, J. J. Rodriguez, J. M. M.
Montiel, and J. D. Tardos, “ORB-SLAM3: An
Accurate Open-Source Library for Visual,
Visual-Inertial and Multi-Map SLAM,” IEEE
Transactions on Robotics, vol. 37, no. 6, pp.
1874–1890, 2021.

[3] P. Adarsh, P. Rathi, and M. Kumar, “Yolo
v3-Tiny: Object Detection and recognition
using one stage improved model,” 2020 6th
International Conference on Advanced
Computing and Communication Systems
(ICACCS), Mar. 2020.

[4] M. Sandler, A. Howard, M. Zhu, A.
Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,”
2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Jun. 2018.

[5] M. M. Manhaes, S. A. Scherer, M. Voss, L. R.
Douat, and T. Rauschenbach, “UUV Simulator:
A Gazebo-Based Package for Underwater
Intervention and Multi-Robot Simulation,”
OCEANS 2016 MTS/IEEE Monterey, 2016.

[6] P. Pereira, “Scripts to help Bluerov integration
with ROS,” GitHub, 30-Jan-2018. [Online].
Available:

https://github.com/patrickelectric/bluerov_ros_
playground. [Accessed: 12-Jun-2022].

[7] FletcherFT, “Scripts to help bluerov2
integration with ROS and UUV Simulator,”
GitHub, 17-May-2021. [Online]. Available:
https://github.com/FletcherFT/bluerov2.
[Accessed: 12-Jun-2022].

NYUAD Robosub - 7

Appendix A - Component specifications

Component Vendor Model/Type Specs Custom/
Purchased

Cost Year of
Purchase

Buoyancy
Control

Blue
Robotics

BlueROV2
Heavy

Machined
Buoyancy Foam

x2

https://bluerobotics.c
om/store/rov/bluerov
2-components-spares
/float-r3318-brov2-h

eavy-r1-rp/

Purchased $100 2022

Frame Blue
Robotics

BlueROV2 https://bluerobotics.c
om/wp-content/uplo
ads/2020/02/br_blue
rov2_datasheet_rev6

.pdf

Custom
(Significan

tly
modified)

$3,950 2017

Additional
Frame

Blue
Robotics

BlueROV2
Heavy R2

8 turbines, 6 DOF
movements

Purchased $740 2022

Waterproof
Housing

Blue
Robotics

3’’ enclosure
4’’ enclosure

https://bluerobotics.c
om/store/watertight-
enclosures/wte-vp/#t

ube

Purchased $200 2022

Waterproof
Connectors

Blue
Robotics

Penetrators x4 https://bluerobotics.c
om/store/cables-con
nectors/penetrators/p

enetrator-vp/

Purchased $36 2022

Gripper Blue
Robotics

Newton Subsea
Gripper

6.2 cm aperture Purchased $590 2022

Torpedo
Launcher

- - Max speed 3m/s Custom - 2022

Dropper - - - Custom - 2022

Sonar Blue
Robotics

Ping Sonar https://bluerobotics.c
om/store/watertight-
enclosures/buoyancy

/float-r1/

Purchased $360 2022

Pressure
Sensor

Blue
Robotics

Bar30
High-Resolutio

n 300m
Depth/Pressure

Sensor

30 Bar (300m depth)
with a depth

resolution of 2mm

Purchased $85 2022

Thrusters Blue
Robotics

T200 Thrusters
x8

https://bluerobotics.c
om/store/thrusters/t1
00-t200-thrusters/t20

Purchased Included in
Frame +

Additional

2017

NYUAD Robosub - 8

0-thruster-r2-rp/ frame

Motor
Control

Blue
Robotics

Basic ESC https://bluerobotics.c
om/store/thrusters/sp
eed-controllers/besc

30-r3/

Purchased Included in
Frame +

Additional
frame

2017

High Level
Control

HEX Pixhawk 2 UAV
Autopilot Flight

Controller

https://docs.px4.io/v
1.9.0/en/flight_contr
oller/pixhawk-2.html

Purchased $260 2022

Propellers Blue
Robotics

T200 propellers Diameter: 3” - Included in
Frame +

Additional
frame

2022

Battery Blue
Robotics

LiPo Battery 10000 mAh 14.8 V
LiPo

Purchased $170 2017

Regulator Blue
Robotics

5V 6A Power
Supply

https://bluerobotics.c
om/store/comm-cont
rol-power/control/be

c-5v6a-r1/

Purchased $25 2022

CPU NVIDIA Jetson TX2
Module

https://developer.nvi
dia.com/embedded/j

etson-tx2

Purchased $500 2022

Carrier
board

AUVIDEA J120 carrier
board for the

NVIDIA Jetson
TX1/TX2

https://auvidea.eu/do
wnload/manual/J120
/J120_technical_refe

rence_1.6.pdf

Purchased $300 2022

Companion
Computer

Raspberry
Pi

Raspberry Pi 4 https://www.raspberr
ypi.com/products/ras
pberry-pi-4-model-b/

specifications/

Purchased $160 2022

Internal
Comm

Network

BotBlox GigaBlox +
Nano PicoConn

https://botblox.io/pro
ducts/gigablox-small

-gigabit-switch

Purchased $125 2022

External
Comm

Interface

Blue
Robotics

Fathom-X
interface board

set

https://bluerobotics.c
om/store/comm-cont
rol-power/tether-inte
rface/fathom-x-r1/

- Included in
Frame

2017

Acoustic Aquarian Aquarian H1C
hydrophone

https://www.aquaria
naudio.com/AqAud

Docs/H1c%20manua
l.pdf

Purchased $600 2022

NYUAD Robosub - 9

Front
Camera

Luxonis OAK-D https://github.com/lu
xonis/depthai-hardw
are/blob/master/BW
1098OAK_USB3C/
Datasheet/OAK-D_

Datasheet.pdf

Purchased $200 2022

Inertial
Measure-
ment Unit

(IMU)

HEX Pixhawk 2 UAV
Autopilot Flight

Controller

InvenSense
MPU9250,

ICM20948 and/or
ICM20648

Purchased $260 2022

Doppler
Velocity

Log (DVL)

- - - - - -

Algorithms:
Vision

- MobileNetV2,
YoloV3-tiny

- - - -

Algorithms:
Localization

and
Mapping

- ORB-SLAM 3 - - - -

Algorithms:
Autonomy

ROS
Melodic

SMACH - - - -

Algorithms:
Path Finding

- Lazy Theta* - - - -

Open-
Source

Software

- ROS Melodic,
Blender

- - - -

