
Mechatronics 1 of 10

SDSU Mechatronics 2022 Autonomous
Underwater Vehicle (AUV): Perseverance

Tristan Richmond, Bhuvan Bhardwaj, Tran Ly, Cayton Larmer, Ian Reichard, Ken Ishio, Cameron Zamora, Brad
Dela Llana, Jean Michel Vives, Yulianna Izaguirre

1

ABSTRACT - Perseverance is the
Mechatronics AUV for the 2022 Robosub
competition. The main goal for the team
was to make a modular design that would
be able to complete all obstacles but still
let us focus on certain tasks. This strategic
decision guided the design efforts, leading
to a mechanical design with swappable
components, a generalized electrical
system capable of accepting any printed
circuit board with a common interface,
and ample opportunity for future
expansion.

Fig. 1: 2022 RoboSub vehicle
“Perseverance”.

I. COMPETITION STRATEGY

Mechatronics’ competition strategy for
2022 is to design an AUV that could be
easily modified for various tasks. As a
baseline, the main focus was to complete a
few tasks with high confidence, with stretch
goals down the line.

This year, our team prioritized the goal
of reliably going through the competition
gate, completing the Make the Grade (buoy)
task, and rising in the octagon for the Cash
or Smash task.

Mechatronics decided to use the side of
Bootlegger for the gate task. For the Make
the Grade task, we expect that our vehicle
would be able to bump either buoy, as we
focused on the vehicle being able to hit
either for the highest chance of success
during the competition.

Perseverance was designed as a baseline
AUV with the intention of future
modifications such that multiple AUVs are
deployed in the RoboSub competition.

II. VEHICLE DESIGN
For the overall design of the AUV

vehicle and its systems, the focus was on
simplicity, accessibility, and modularity. We
found that focusing on these aspects made
the design more efficient for testing and
debugging purposes.

Fig. 2: CAD model of Perseverance.

A. Mechanical Systems
Perseverance's original design was

influenced by criteria of accessibility and
modularity. These foci led to the modular
I/O port design, the clamshell hull and the
external frame as being defining features of
Perseverance in the 2017 - 2019 competition
cycles. With the onset of the Covid-19

Mechatronics 2

pandemic and the subsequent 2 year pause
in club operations, a great deal of knowledge
was lost within the club. More so than ever,
the flexibility and ease of access allowed by
the above design features have been critical
to the success of the team this year.

Because of the loss of experience within
the club, this year's rebuild of Perseverance
has focused on themes of simplicity,
consistency and modifiability. While this
imposes additional limits on what the team
is able to accomplish from both a technical
and strategic perspective, it offers a number
of critical advantages. The simpler nature of
designs has greatly reduced the
manufacturing requirements, with many
components now being made of acrylic and
3-D printed PLA. These materials are both
much cheaper than metals and are able to be
manufactured in-house, saving time and
money spent on outsourced components.
Furthermore, this has allowed for less
technically experienced team members to
offer real contributions to the design and
manufacture of the submarine.
Perseverance's modular nature has also
allowed for many components to be bought
off-the-shelf, allowing further time saved.

Among the new components included in
the Perseverance rebuild is the redesigned
torpedo system. While the old torpedo
system operated off of a pneumatic system
housed inside the body of the submarine, the
new torpedo system uses compression
springs and a 3-D printed nylon housing.
The firing mechanism consists of two servos
which are controlled from a printed circuit
board inside the submarine. This design was
heavily influenced by the simplicity
criterion; while the previous pneumatic
system may have allowed for greater
torpedo velocity, experience has taught the
club that a point-blank approach provides a
higher success rate for the torpedo
challenge. Furthermore, the solenoids and

pneumatic hoses needed for the old system
required much more space and offered more
points of potential catastrophic failure.

The orientation of the T200 thrusters has
also been modified from the 2019 iteration
of Perseverance. While the old orientation
had the thrusters either normal or parallel to
the forward-backward axis of the submarine,
the new orientation has the thrusters offset
from this axis by ±30°. By engaging all 4
vectored thrusters at once we can more
efficiently make quick turns along with
more efficient strafing, but this also adds
more complexity to our thruster controller.

In order to test the effectiveness of
Perseverance's aging sealing system, the
mechanical and electrical teams developed a
simple vacuum testing. Informed by the
previous critical failure of an integrated
valve, the new vacuum test takes advantage
of Perseverance's modularity by attaching to
one of the removable pneumatic ports,
which is subsequently sealed with a screw
before pool testing. While experience has
demonstrated that vacuum tests cannot be
used to strictly replace more rigorous
underwater mechanical tests for find leaks,
they do allow for a much faster pass/fail test
of the sealing system that does not require
valuable pool time.

B. Electrical Systems
Our electrical system is made up of four

custom boards designed by our members:
Weapons Gripper Board (WGB), Sensor
Interface Board (SIB), Kill Auto Board
(KAB), and Hydras.

All of our custom boards communicate
via USB. We decided to use USB because of
its ability for fast development and common
interface on hardware devices. The main
processor, the Jetson AGX Xavier, then
communicates with all the boards through a
USB Hub, simplifying our interfacing with
the embedded systems.

Mechatronics 3

Fig. 3: Perseverance’s electrical
system block diagram.

Power system of Perseverance has been
designed to supply a pure, uninterrupted
power to the whole vehicle's peripherals.
The power system and the distribution
elements in the vehicle are designed in a
way that it consumes less space and allow
proper wire management. Two 10000 mAh
lithium polymer(Li-Po) batteries are
connected in parallel and used as the main
power house of Perseverance. A parallel
configuration is chosen to improve the
endurance and the run time of the vehicle.
The supply from the battery is then
buck/boosted and distributed amongst the
peripherals in the vehicle. Different voltage
rails of 5V, 12V, and 19V are branched out
from the power distribution board which are
then provided to the motherboard, DVL,
hydrophones, cameras, and the suite of
sensors. A kill mechanism is also
incorporated in the vechicle to safely halt
the run of the vehicle in case of any
emergency.

The kill switch is an integral part of any
electrically operated vehicle, a kill switch
ensures of a proper stop of a vehicle by
cutting the power to the propellers or any

actuation system to bring the vehicle to a
complete halt. Perseverance is equipped
with a kill mechanism based over a
electromechanical switch(relay). When the
relay is actuated the power supply to the
thrusters is cut and the vehicle comes to a
complete stop; allowing the vehicle to come
to the surface, due to its slight positive
buoyancy. A indication LED strip is also
placed along the vehicles hull to ensure a
proper signaling of the operating state of
Perseverance.

Perseverance is equipped with a
variety of sensors which allows the vehicle
to sense the surroundings and provide
feedback to the motherboard. Suite of
sensors include pressure sensor, IMU
(AHRS-8), DVL, Dual Cameras, Sonar
Sensor, Hydrophones, and Leak sensor.

C. Software Systems

The software for this year is written in
Python 3 for most processes, C is being used
for our “master” process in charge of
starting up other processes, and some bash
scripts are used to set up our environment.
C++ libraries with Python wrappers such as
OpenCV are being used in our vision
system. Using the AGX Xavier with Ubuntu
18, there is significantly more processing
power on our AUV than previous iterations
in other years.

Our programming team has gone
through many leadership and member
changes since the last in person competition,
and the lessons previous members have
learned have not fallen on deaf ears. We
have developed a new software system from
the ground up with our new team with the
following design goals in mind: Reliability,
Time to Develop, Modularity and Ease of
Integration, Thorough Documentation, and
Obstacle Detection.

Mechatronics 4

Reliability is the most important metric
for improvement for us as opposed to
previous years. Our team has switched
between various systems for interprocess
communication and has struggled with
implementing features such as validating
working processes during autonomous runs.
This year we have deviated from previous
implementations using our in-house built
mechos and in-house built docker containers
with RPC. This marks our return to ROS
(Robot Operating System), which is a
reliable suite of tools for interprocess
communication and industry standard in
robotics. In addition to switching to ROS,
we are implementing a feature-rich
watchdog program which can restart failed
processes while the AUV is fully
autonomous. This helps improve reliability
significantly compared to previous years.

Modularity and Ease of Integration was
another important concern of ours. Having
less “hard coded” components of our system
and allowing things to be flexible allows us
to work in real-world scenarios. An example
of our code being modular is our USB
device identifier, discussed in the operating
system section. Since we are using ROS, we
needed easy to integrate APIs that can listen
to specific ROS topics as well.

Thorough Documentation is mandatory
for team cohesiveness and legacy support.
We want components of our code to be used
for years to come, rather than for one year
and needing to recode everything. We
enforced our own style guide this year,
modeled after the pip3 and Linux kernel
standards, to go along with this design goal.
In order for code to be merged to our beta
branch on git, being checked and signed off
on by the project manager was mandatory,
as they were also responsible for approving
any pull request.

Obstacle Detection has always been a
difficult task for autonomous robots and is

the autonomous task we will find ourselves
working on the most. We plan on integrating
various sensors into our inference system to
precisely and accurately as possible
determine what we are looking at. These
include cameras with a machine learning
model (see below in computer vision), a
clustering or contouring algorithm, a sonar
sensor to judge distance, and a sophisticated
mission planner.

Possibly the biggest design change this
year was our commitment to using ROS
(Robot Operating System) for interprocess
communication so our programs could
reliably talk to each other. Using the wisdom
from previous leads on the team we made
the decision to switch to ROS because it was
preferable to maintaining our own ROS
alternatives in addition to actually building
our AUV’s code. As stated earlier, our
biggest concern was reliability, and ROS
provides that to us for little setup cost
compared to writing our own alternative.

The Operating System (OS) of choice
was Nvidia’s build of Ubuntu 18 LTS for
their ARM-based AGX Xavier computer.
We integrated our code more into the
operating system than previous years. While
we share data with ROS, it is important to
share data outside of ROS for reliability
reasons, in case ROS itself may have an
issue. Our watchdog program uses System V
style shared memory blocks provided to us
by the shared memory module in Python’s
builtin multiprocessing library. This
provides a significant performance benefit
compared to our last sub, Pico, which used
RPC channels and Docker containers. We
use UNIX pipes as well to forward data
between processes such as frame data from
the cameras.

Our electrical team has put together a
wide suite of sensors for us to use in our
control system. Our initial plan was to have
a CAN bus early on but that was changed

Mechatronics 5

due to feasibility reasons. We had to change
from that original plan as a result and use
various USB connections to these
microcontrollers instead. Accordingly,
we’ve developed a modular system of being
able to detect which USB device is which by
getting hardware serial numbers and then
solving for where the OS mounted these
devices. This way when we open serial
communications with each device, they are
not hard coded to be on certain ports. This
not only allows for rerouting of the electrical
system without compromising our code, but
also allows for newer devices to be added
easily, once we get their serial numbers.

Control-wise, we wrote code for 14
possible movement configurations and hope
to take advantage of the new vectored
thruster design as much as possible. Our
planned control system is to have multiple
PIDs to balance each of our 6 degrees of
freedom depending on our tasks, one
dedicated for moving backward, and two
dedicated to strafing left and right with our
new vectored thruster configuration. We
have some

Our computer vision system has not
been altered too significantly from our last
AUV. The main consideration we have now
is adding a second camera, allowing us to
see below our AUV. Our cv system uses
common libraries such as OpenCV. The
largest change is negotiation in our AI
between different forms of vision rather than
just relying on a machine learning model. In
addition to the YOLO object detection
system we have used in previous years, we
plan on adding another inference algorithm
for boundary detection, likely K-nearest
neighbor clustering. We also plan to tie in
various sensors such as our sonar sensor to
judge distance to objects, along with our
mission planner for making further
inferences on what we should be seeing.
These will allow us to better gather where

we are and how to proceed legacy code we
can use and port to be ROS compatible for
this purpose. In addition, our wide variety of
sensors can tie in to our control systems and
allow for us to have better decision making
and movement while in autonomous mode at
competition.

Our graphical user interface (GUI) has
been rebuilt from our last AUV, Pico. Many
lessons were learned from the last GUI and
far better design principles were used in the
new GUI. We are still using the tkinter
library with the Pillow library so we can
convert OpenCV images and easily display
them in a GUI from our cameras. Instead of
opening UNIX pipes to share information,
we now use System V style shared memory
blocks, just like we do for our watchdog
program. This allows for far more efficient
communication between different threads
and the main thread for displaying windows.
We also support 2 cameras now in the GUI
so we can see what is going on, as opposed
to previous years where the camera display
was not built into the GUI directly.

IV. ACKNOWLEDGMENTS

The Mechatronics team would like to
thank the SDSU Engineering Department as
well as our corporate sponsors: Leidos,
Northrop Grumman, Altium, Solidworks,
Nordson, and BrainCorp. We would also
like to thank our faculty advisors Theresa
Garcia, and Donovan Geiger for supporting
the team.

V. REFERENCES

[1] J. Redmon and A. Farhadi, YOLOv3: An Incremental
Improvement. Washington: University of Washington, 2018.

Mechatronics 6

Mechatronics 7

Appendix A: Component Specifications

Component Vendor Model/Type Specs Cost(if
New)

Buoyancy Control PVC Pods

Frame Custom 6061 T6 anodized aluminum, 0.25” Thickness

Waterproof Housing Custom 6061 T6 anodized aluminum, 0.25” and 0.5” Thickness

Waterproof Connectors Seacon WET-CON $300

Thrusters Blue Robotics T200 $169

Speed controller Basic ESC Bluerobotics
Blue ESC

30 amp $36

High Level Control NVIDIA Jetson AGX
Xavier

$1499

Actuators None

Propellers Blue Robotics T200 $200

Battery Hoovo Li-Po Battery 10000 mAh 4s
100c

$160

Regulator Mini-Box DC-DC USB $54.95

CPU NVIDIA Jetson AGX
Xavier

$1499

Internal Comm Network Custom

External Comm Interface Seacon Seacon Cable $1000

Programming Language 1 Python

Programming Language 2 C++

Compass Sparton AHRS M2 $1500

Inertial Measurement Unit
(IMU)

Sparton AHRS M2 $1500

Doppler Velocity Log Teledyne Wayfinder $7500

Mechatronics 8

Cameras Logitech Streamcam Resolution:
640x480

$290

Sonar Blue Robotics Ping Sonar $360

Hydrophones Aquarian AS-1 $1185

Manipulator Blue Robotics Netwon
Gripper

$59

Algorithms: vision You Only Look Once V3

Algorithms: acoustics Phase Difference

Algorithms: localization
and mapping

DVL, AHRS, Sonar

Algorithms: autonomy PID

Open source software OpenCV, ROS, PySerial

Team size 32

HW/SW expertise ratio 1.5

Testing time: simulation 0

Testing time: in-water 98 Hours

