THE UNDERWATER ROBOTICS TEAM

STEMBot Outreach Program

September | 2022

Proprietary and confidential

Meet the Team 2022-2023

Marta Koziy Finance Class of 2025 Business Team

Gabe Willenberg Mechanical Engineering Class of 2023 Mechanical Team

Chinyere McLean Electrical and Computer Engineering Class of 2024 Navionics Team

Brach Knutson Electrical and Computer Engineering Class of 2025 Software Team

Dr. Ziaeefard Team Faculty Advisor Senior Lecturer, Electrical and Computer Engineering

Hollie Hinton Business Advisor Director, Corporate Relations University Advancement

Overview of STEMBot Outreach Program

OVERVIEW

STEMBot Kit

ABSTRACT

 This proposal aims to promote science, technology, engineering, and math (STEM) among underprivileged schools within the greater Columbus area.

WHAT IS THE ROBOT MADE OF?

• Materials include inexpensive, common manufacturing items (e.g. PVC).

OBJECTIVE FOR DESIGN

 To make a plug and play robot so we can focus on the fundamental concepts of engineering (e.g. CAD design, circuits, basic programming)

The in-person curriculum consists of the following...

OVERVIEW

5 Day Program

60 Minutes/Day

WE AIM TO TEACH BASICS! TOPIC OF THE DAY

Introduction to the Program

Fundamentals of Mechanics

03

Fundamentals of Electrical

05

Fundamentals of Software

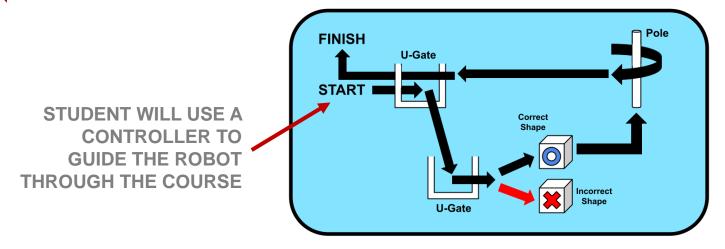
Testing the STEMBots in the Obstacle Course

GENERAL

Documentation will be received from Rosemore Middle School students and UWRT members

UWRT MEMBERS

- Read and Acknowledge the Standard Operating Procedure for the STEMBot Outreach Program
- Take and Pass the Universal K-12 Training 60 Days Before Volunteering


ROSEMORE MIDDLE SCHOOL STUDENTS

- Signage of Liability Waiver by parent/guardian
- Signage of Photo Release Form by parent/guardian

The obstacle course will have tasks like what UWRT sees at competition

Each student team will have the ability for at least one person to navigate the robot through the obstacle course!

Cost of Program

TOTAL PROGRAM COST: \$1,000.00

circuit boards/batteries \$200.00

ADDITIONAL COSTS

\$150.00

.....

THE UNDERWATER ROBOTICS TEAM Detailed Curriculum for each Section of STEMBot

DETAILED CURRICULUM

Learning Initiatives

MECHANICAL

• I can use TinkerCAD.

- I can build a remote operated underwater vehicle (ROUV).
- I understand center of mass and center of buoyancy and its applications.
- I understand the differences between series and parallel circuits.

ELECTRICAL

- I can build simple circuits on a breadboard.
- I know concepts related to motor speed control.
- I can use software to control motors and LEDs.

٠

• I can build a remote operated underwater vehicle (ROV).

SOFTWARE

- I can understand and explain what software is.
- I can understand what ROS is and how it applies to the STEMBot.
- I can understand and explain the different applications software has.
- I can build and run a simple program using Scratch.

MECHANICAL

Curriculum: 60 minutes

Section	Lesson Plans	Description	Resources
1	Introduction to mechanical team, TinkerCAD account set-up	 ~30 minutes to set up TinkerCAD 	 Intro mechanical presentation CAD modeling presentation instruction packet
2	Introduction to making parts	 Starting a project Learn to sketch Learn to extrude and cut 	 CAD modeling presentation instruction packet
3	Introduction to assembly and constraints, introduction to COM and COB	 Learning assembly feature in TinkerCAD (focusing on mating) Center of Mass and Buoyancy experiment and teaching 	 StemBot CAD modeling presentation STEMBot COM&COB presentation Instruction packet
4	Assembly of STEMBot and being modifications of STEMBot	 Assembling physical STEMBot mechanical kit 	Instruction packet

ELECTRICAL

Curriculum: 60 minutes

Section	Lesson Plans	Description	Resources
1	Introduction to electrical team and battery safety	 Simple intro to the team What EE is all about General battery safety presentation 	Team intro presentationBattery safety presentation
2	Introduction to simple circuits and breadboard demos	 Simple intro to the team Circuits with resistors Circuits with LEDs Circuits with switches 	 Simple circuits presentation Simple circuits instructional packet
3	Motor circuits and motor speed control	 Motor types and uses Demo motor circuits Explanation of motor speed control Motor speed control demo 	 Motor controller presentation Motor controller instructional packet
4	Microcontrollers; connecting software with electronics	 What is a microcontroller Controlling LEDs with a MCU Controlling Motors with MCU 	 Microcontroller presentation Microcontroller instructional packet
5	ROUV electrical construction	Putting together the ROUV from kit and instructions	 ROUV construction instructional packet

SOFTWARE

Curriculum: 60 minutes

Section	Lesson Plans	Resources
1	Intro to Software	Introduction to software presentationCode.org activities
2	Software: Introduction to Simple Code and ROS	 Internet access for Code.org and ROS Slides
3	Introduction to Scratch	Introduction to scratch presentation & internet access
4	Scratch Activities	 Instructions to create an online scratch game (easy) Instructions to create an online scratch game (medium) If time permits, students can create their own online games and use UWRT members as a resource
5	Introduction to STEMBot Software	UWRT codebase & simulatorSoftware team walkthrough

Photos from STEMBot Workshop

