
Michigan Robotic Submarine: Strategy, Design, and
Implementation of Argo

Nolan Kuza, Kathryn Wakevainen, Kobi Wettstein, Shrey Sahgal, Jennifer Chin, Shubh Agrawal, Ivan Wei,
Benjamin Steinig, Adarsh Ponaka, Blake Lieber, Bodee Davis, Emi Yuki, Andrew Huston, Joseph Maffetone,

Arnav Mummineni, Ayan Chowdhury

Abstract—Michigan Robotic Submarine is an undergraduate
student project team at the University of Michigan in its third
year participating in the RoboSub competition. Our autonomous
underwater vehicle (AUV), Argo, shown in Figure 1, is the
product of a year of learning and growth after our first in-
person RoboSub competition in 2022. Our focus this year was
to make our software system and mechanical design as flexible
and modular as possible in order to reliably accomplish the coin
flip, gate, and buoy tasks, with the stretch goal of completing
the bins task. Over the past year, we’ve completely redesigned
our software architecture to make our system more robust to
varying pool environments and allow us to dynamically make
changes to high- and low-level logic efficiently. Thanks to the
modular design of our 2022 AUV, we were able to re-use the
same hull design for Argo with numerous modifications that
make Argo more maneuverable, versatile, and functional than
any AUV we’ve made before. We re-worked our electrical system
design to have considerably higher compute power, increasing the
speed and accuracy of our deep learning-based object detection
system. We also created a robust testing infrastructure that allows
us to quickly and efficiently tune control parameters, diagnose
software bugs, and analyze the efficacy of our AUV while in the
water.

I. COMPETITION STRATEGY

At our first in-person RoboSub competition in 2022, we
found that our software system was too rigid, which made
it difficult to dynamically adjust to the competition pool
environment. Our overarching goal this past year was to create
a flexible and modular system that would allow us to handle
uncertainties and the rapid iteration required to be successful
at competition. We focused on increasing the reliability of
completing the same tasks we attempted last year: the coin flip,
gate, and buoy tasks. With our new software architecture along
with a plethora of changes made to our testing infrastructure,
we aimed to create a system that we can continue building on
to excel at future RoboSub competitions.

A. Target Tasks

Our target tasks for the 2023 RoboSub competition are
the coin flip, gate, and buoy tasks. To complete the coin
flip task, our design requires the robot to be sensing its
environment before starting the run (see section II-B1). The
additional external controls increase the system complexity,
but we believe that this is quite reliable, and will allow us to
manage the submarine’s software system without connecting
to it via a tether.

Fig. 1. CAD of our 2022-2023 AUV, Argo.

In order to reach the buoy task from the gate, we intend
to use the path-marker, which requires an additional camera
and a computer vision system on the bottom of the submarine
(see section II-C7). Much of the computer vision system for
the bottom camera is very similar to the perception system
we use at the front of the submarine, so incorporating it
was relatively easy. Since we use classical computer vision
algorithms for our relatively low-resolution bottom camera,
this sub-system draws a reasonably low amount of computing
power. Should this system fail, we can use a hard-coded
“fallback” orientation, making the system sufficiently reliable
to be worth its associated complexity.

We also aim to optimize our score for the buoy task by both
touching the symbols in order and staying with the destination
selected during the gate task. To accomplish this, we use our
front-facing camera equipped with machine learning to detect
the glyphs (see section II-C8). It is difficult to evaluate the
reliability of this process, as we did not have sufficiently
generalized training data to create and evaluate a machine
learning model in advance (see section II-C9). Thus, we have
written our code such that we can easily ignore the glyphs
should we choose to (see section II-C5). This enables us to
make a real-time decision as to whether the ML system is
reliable enough to be worth its complexity.

B. Other Tasks

We plan to attempt one additional task: the bins task. The
simplicity of our dropper mechanism makes it quite reliable
from a mechanical perspective. However, recognizing the
location of the bins requires training another machine learning
model, which would be quite difficult. Additionally, due to the
need to prioritize higher yield tasks, we were unable to test the

Michigan Robotic Submarine 2

dropper, and therefore are unsure of its reliability. However,
our flexibility in tuning movement constants (see III-A), allows
us to easily account for changes to Argo’s maneuverability
as a result of adding the dropper. Thus, if we are unable to
complete this task, we believe it will not affect our ability to
complete other tasks.

We do not intend to complete the torpedoes task or any task
requiring a grabber. Although we spent some time developing
torpedo and grabber mechanical systems, we ultimately de-
cided not to include them in the final iteration of the vehicle.
Incorporating either into the vehicle would have taken a
significant amount of time away from work on the rest of Argo.
Additionally, our hydrophone system is still in development
so we would be unable to locate the pinger-based tasks which
utilize the torpedo system and grabber.

II. DESIGN CREATIVITY

A. Mechanical

Fig. 2. CAD of top-view of Argo.

1) Hull: The hull of Argo was reused from our previous
AUV. This hull, which was machined from 6061 aluminum,
had provided adequate leak protection for its three ports: a
front window for the ZED stereo camera, a window for the
bottom camera, and a larger window on the top to make
the electrical system visible. A double o-ring face seal was
employed at each port to prevent water from being able to
enter the interior of Argo. Its eight-thruster configuration had
also given it good maneuverability, as it was able to move in
all six degrees of freedom.

In addition to reusing the primary hull component, we
incorporated handles to its sides to aid with transport and
machined longer legs to make room for the dropper system,
which will be discussed in the next subsection. Because Argo’s
hull had been designed to allow for modularity, mounting
these new components was straightforward. Adding these
components increased Argo’s weight, which we dealt with by
mounting additional buoyancy foam to the top of the vehicle.
To compensate for shifts in Argo’s center of buoyancy, we
used the sliding mounts to reposition our four corner-angled
thrusters to positions that lent themselves to stable motion.

2) Dropper: This year, we implemented a marker dropper
subsystem. Rather than employing one dropper containing
two markers, we incorporated two identical droppers, with
one marker in each. This configuration was employed to
improve the reliability of the dropper system by eliminating
the possibility that two markers would unintentionally be
dropped at the same time. Each dropper consists of a 3D-
printed tubular component in which the marker is stored. To
hold the marker in place before an intended drop, a sheet
metal arm partially blocks the bottom opening of the tube. To
release the marker, a servo connected to this arm is actuated,
uncovering the bottom opening of the tube and allowing the
marker to fall. A sheet metal bracket is used to mount each
marker dropper to the sub. 3D-printing large components of
the marker droppers was a quick and easy way to produce the
complex shapes incorporated into their design. Figure 3 shows
a CAD screenshot of a marker dropper assembly while Figure
4 illustrates how each marker dropper was incorporated into
the sub.

Fig. 3. CAD of the dropper mechanism which mounts to the bottom plate
of the hull.

Fig. 4. CAD of front-view of Argo.

B. Electrical

We continued to iterate on various parts of our electrical
system to help meet our goals of flexibility and reliability.
Our current power architecture is shown in Appendix B.

2

Michigan Robotic Submarine 3

1) Hall Effect Sensors: To control the behavior of Argo
while disconnected from its tether, we used two latching
hall effect sensors. They allow us to control the starting,
stopping, and resetting of our sensors (in particular, the IMU)
without needing a connection to a computer. The hall effect
sensors did not require any additional holes in the hull, as
powerful magnets are used to switch the states. Being able to
quickly control the state of our sensors externally improves the
efficiency of our testing setup time. We control the hall effects
by wiring them to the main computer and listening for their
changes in a control script. Once one of the values changes,
an indicator LED is lit so we can see that the state has been
activated.

2) Motor Control Board: Last year, each of our eight
thrusters had 3 long wiresr outing across the bottom of
the AUV’s hull. These 24 wires would connect to eight
electronic speed controllers (ESCs) and then output to eight
PWM signals. This made the electronics difficult to manage
and organize, which is both inconvenient and potentially
dangerous. The process to change an ESC was lengthy and
prone to breaking other components. As a result, we chose to
encapsulate all of these wires and components into a simple
printed circuit board. We now have two Motor-ESC boards
which each take input from 4 thrusters and output 4 PWM
signals. The ESCs connect directly to the PCB with screw-
block terminals, so we can easily unscrew and swap them out.
The thruster motors and PWM output connect to the PCB
using Molex connectors which provide strong connections and
can be disconnected easily if needed. This frees space inside
Argo for other components and makes swapping easier when
necessary.

3) Voltage Regulation: We continue to use our custom
power distribution PCB, which utilizes an off-the-shelf Pololu
5V 15A Step Down Regulator as our DC-DC converter to
supply up to 75 W to our system. To upgrade to the Jetson
Xavier this year (see II-C2), we designed a new power regu-
lator to provide the ideal voltage for peak performance on the
Jetson Xavier (14V). This mitigates the risk of overvolting the
Xavier or having its power input fluctuate over time compared
to directly connecting the Xavier to the battery.

C. Software

Our software stack utilizes the Robot Operating System
(ROS) to distribute our logic into distinct modules called
nodes. These nodes are organized into packages based on their
role in Argo’s operation. Fig. 5 shows these packages, with
arrows representing flow of information between packages.
The majority of our code is written in Python, with the
exception of the hardware abstraction layer, which is written
in C.

1) Custom Flight Controller: One of our key priorities this
year was the development of a custom flight controller for
Argo. While using a PixHawk 4 (PX4) flight controller (see
II-C2) provides some ease of use, it reduces the flexibility of
our software system and limits the motion and sensor quality.
Therefore, we began developing our own platform with a

Fig. 5. High-level Software Architecture

focus on modularity, customizability, and robustness to address
these concerns. For this competition, we are in a transitional
phase where most actions are controlled by the PX4 through
the MAVROS framework and some are controlled by custom
software. This is because we wanted to ensure the flight
controller was functional and reliable before use, as it is
fundamental to Argo’s operation.

2) Computing Architecture: We first sought to address the
lack of flexibility of the PX4 flight controller. Integrating it
into the system required connecting a microprocessor running
an operating system (OS) specified by the supplier. While this
is a common practice in industry, the issue was that the man-
dated OS contained many outdated software dependencies. In
previous years, we used the same microprocessor to run both
our autonomy software and the PX4. However, this became
an issue as we were unable to update software dependencies
as we developed new software. In response, we designated the
PX4 its own microprocessor, allowing us to use any micropro-
cessor, OS, and software for our autonomy stack. This proved
invaluable, as we are now able to use a Jetson Xavier NX
with the Ubuntu 20.04 operating system without affecting the
PX4. This decoupling also will allow us to remove the PX4
from our system in the future without significantly changing
the overall architecture or controls software.

3) Motion Control: Another issue we wanted to address
was the PX4’s limited motion control, given it directly maps
motion commands to electrical signals on the motors. This fails
to address the physical properties of the motors. These include
a nonlinear relationship between the motor’s input signal and
output thrust, a difference in maximum thrust when rotating
the thruster forwards opposed to backwards, and a deadband in
which small signals do not cause the motor to move. To gain
more accurate control of the motion of Argo, we developed a
control system that accepts desired thrust as its input. By fitting
a quadratic regression model to data provided by the motor
specifications, as shown in Figure 6, we could accurately map
a desired thrust to the corresponding signal to send to the
motor. Commanding thrust rather than raw signal allows us to
account for the physical properties of the motor that the PX4

3

Michigan Robotic Submarine 4

Fig. 6. Quadratic Fits to Thrust at 10-20 V

alone could not. Because the PX4 does not allow overriding
the signal sent to the motor, this system is not currently in
use. It is ready for use once the custom flight controller is
integrated.

4) Depth Sensor Integration: Last year, data from our depth
sensor was read using the PX4. As we aim to remove the
PX4 from our system, transitioning to our own custom flight
controller requires a different method of processing depth data.
This year, we decided to interface with the sensor directly with
an Arduino microcontroller via a logic level converter. The
microcontroller serializes the data and continuously publishes
it to the brain for use within our autonomous routines. This
allows us to obtain critical data while keeping our system as
modularized as possible and providing the performance and
functionality we needed. Benchmarks demonstrated that this
method would suffice given our latency requirements. Further
testing showed we could have one Arduino microcontroller
controlling multiple components, such as our depth sensor and
a servo, without significant performance impact.

5) Task Planner: The task planner is code for coordinating
system components to complete tasks during a run. At the
previous competition, we used a state machine framework to
control our high-level task planner. This framework was useful
in the way that it allowed us to reason about our code, but was
quite inflexible. This year, we rewrote the framework to allow
rapid changes to the task planning logic while at competition.

The goal of the new system was to decouple transitions
between states from the state itself. As an example, suppose
we decide that attempting to choose a side on the gate is
unreliable. In the original logic, the “move towards gate”
state would send a “seen glyph” outcome, which would then
transition to the “move towards side” state. To make the
change, we simply switch the transition to stay in “move
towards gate.” This changes the behavior of the task without
having to modify any of the business logic of the states.

6) Collision Detection: We use PX4 Inertial Measurement
Unit (IMU) to detect collisions with the buoy. We only perform

collision detection while moving forwards; in order to perform
collision detection, we take acceleration measurements along
the surge (forwards/backwards) axis of our craft from the IMU,
filter out noise, and determine if the negative acceleration
exceeds a certain pre-tuned, fixed threshold. Being aware of
when the vehicle collides with the buoy is key for being able
to hit it twice, as required for maximum points.

7) Path Marker Detection: In order to detect the path-
markers located on the bottom of the pool, we use classical
computer vision. Our implementation uses the library OpenCV
to apply an HSV mask tuned to the color of the marker in the
pool, and then runs line detection on the masked output. We
then merge similar lines to identify the long edges on opposite
sides of the marker, and average their relative angles to find
the true heading of the marker relative to the current heading
of Argo.

8) Glyph and Object Detection: One advantage of switch-
ing our onboard computer is the increased computing power
provided by the NX. We now achieve 6 TFLOPS, while last
year’s system achieved 0.5. We continue to use the ZED 2
Stereo Camera for forward vision and a bottom facing camera
for pathmarker detection.

Having had good results using the YOLOv5 neural network
[3] for object detection last year, we decided to continue to
use this model with some modifications to our implementation.
Due to our hardware and software upgrades, we were able to
fully abandon the deprecated inference network called Dark-
net. This year we are utilizing the native PyTorch framework
which is an open source machine learning framework that is
an industry standard for this type of work [4]. Its ease of
use, extensive documentation, and greater usability are much
improved compared to our prior framework. With this change,
we were able to train our models in a different way as well.
We now utilize a service called the Great Lakes Computing
Cluster for all of the computational power for generating the
model, and it allows us to train our models in a fraction of
the time.

9) Machine Learning Process: In line with our goal to
increase our system’s ability to rapidly iterate designs, we
focused on overhauling and documenting the workflows we
use to train deep learning models and collect data.

Previously, our training process consisted of a complicated
series of manual steps that required extensive time and knowl-
edge of the system. In response, we developed a series of
scripts to automate the setup of training on the Great Lakes
Computing Cluster and removed the need to generate the
image labels for each training run. Since the contents of a
label file are static after bounding boxes are drawn on each
image, we simplified the process by caching them instead
of re-generating them every time. To understand how well
newly trained models perform on a test set, we utilized a
model evaluation script, provided by the Ultralytics YOLO
package. These evaluation metrics allow us to easily compare
the performance of two models.

The data collection process was similarly suboptimal. We
created a data pre-processing script that ensures all of the

4

Michigan Robotic Submarine 5

images were of the correct resolution, file type, and naming
convention. We would then import the images to LabelBox
and draw bounding boxes. A second script then generates the
label files and splits them into the required train and test
designations. Finally, we are left with two separate folders
for training and testing, each containing unique images and
labels. This system automates the process for transforming raw
data into labeled training data which saves time and improves
effectiveness.

III. TESTING AND EXPERIMENTAL RESULTS

A. Teleoperation Framework

A key takeaway from competing in-person last year was the
need for an efficient water testing infrastructure. Due to the
interdependence of our subsystems, it is challenging to test
individual components of our system while Argo is operating
autonomously; it is often difficult to diagnose the source of
errors when the entire system is running. This past year,
we developed a robust teleoperation (teleop) framework that
allows a human driver to manually control various aspects
of Argo while other subsystems run autonomously, enabling
us to quickly and efficiently execute unit tests and debug
components in isolation.

Our teleop framework makes significant improvements to
the default manual control system provided by ArduSub on
our Pixhawk flight controller. The ArduSub manual control
system required all components to be driver-controlled or
autonomous at once, which limited our testing capabilities.
With our new teleop framework, we are able to dynamically
toggle the control mode of individual components, making
our testing process much more fluid. With our new system,
we were able to reduce the time required to switch between
control modes from thirty seconds to nearly instantaneous. In
order to halt Argo in an emergency situation, the ArduSub
manual control system required many human inputs to our
base-station. Our system has a straightforward emergency stop
button, allowing us to quickly stop all processes and minimize
potential damage to Argo or the environment.

A significant benefit of our new teleop framework is the
ability to efficiently tune Argo’s control parameters and to
observe the Argo’s movement capabilities in a controlled
environment. At last year’s RoboSub competition, we tuned
the control parameters of each degree of freedom separately.
While this made the process more efficient, we found that
the accuracy of Argo’s movements would decline significantly
when performing compound motions autonomously (i.e. mov-
ing forward and turning at the same time). With our new teleop
framework, we can tune, for example, our depth controller
while manually maneuvering Argo. This provides a much
more precise sense of how Argo will move while performing
tasks autonomously.

B. In-Water Testing

At the 2023 RoboSub competition, we encountered numer-
ous problems while the AUV was running in-water that we feel
we could have resolved with more water testing throughout

the year. This past year, our team has made a concerted
effort to utilize the resources available through our university
to perform as much in-water testing as possible. We used a
water tank in the Ford Motor Company Robotics Building
(FMCRB) at the University of Michigan to perform unit tests
and sensor, motor, and camera calibrations. We performed
control parameter tuning and movement testing at the U-
M Marine Hydrodynamics Laboratory (MHL). We performed
larger-scale tests that involved competition elements such as
the gate at the Dexter Community Pool in Dexter, MI.

Before each in-water testing session, we wrote a test plan
which describes what specific tests are to be carried out and
explains the high-level purpose of each test. We recorded
the procedure for each task and the expected results, along
with some notes on potential problems or bugs. This simple
addition to our testing workflow allowed us to streamline
testing once we arrived on-site and allowed us to create a log of
tests we’ve previously performed and issues we’ve previously
encountered. See Appendix C for a sample test plan.

Throughout the Fall semester this past year, we significantly
overhauled our software architecture and performed some
mechanical changes to Argo. During this time, we primarily
performed smaller unit-tests using the water tank at the FM-
CRB. Once our software system was stable during the Spring
semester, we were able to perform many more in-water tests
at the MHL and the Dexter Community Pool. Over the course
of the Spring semester, we typically performed between two
and four water tests per month. Once classes ended in May,
we were able to increase the frequency of water testing to
roughly twice a week.

As we incrementally added new components to the hull of
Argo, such as the redesigned legs and dropper mechanisms, we
assessed how they affected the modified weight distribution,
movement, and PID tuning of Argo using several in-water unit
tests. These included driving in a square and driving forward,
both at a set depth. With our new teleop framework, this sort
of movement testing was made more efficient.

While in-water testing sessions were primarily used to
test software changes and the efficacy of Argo to perform
competition tasks, we also used these tests to gain feedback
about Argo’s mechanical design. One key takeaway from our
various tests earlier in the year was the need to properly
reinforce our mechanical components to protect them from
collisions. For example, as we iterated on the design of our
dropper mechanism, we realized that it was easy for the
mechanism to unintentionally collide with the floor of the pool.
Once we understood this problem, we were able to reposition
the dropper mechanism and add metal guards to protect it from
damage.

We performed testing with competition elements and filmed
the pre-qualification video at the Dexter Community Pool. An
indoor pool environment made it much easier to manipulate
competition elements to simulate a competition environment.
In particular, we performed testing of the gate and buoy tasks
by securing the elements to the bottom of the pool with
weights.

5

Michigan Robotic Submarine 6

C. Off-Board Testing
In order to write, execute, and test our software off of Argo,

we developed Docker images that emulate our companion
computer, the PX4, and the MAVROS environment. This
workflow allows anyone on our team to set up our development
environment on their computer in just a few steps. In general,
we tested the logic of our software off-board of Argo and
reserved in-water testing for collecting data to improve our
vision system or test the physical results of the algorithms once
they had been tested in simulation. This prevented valuable in-
water testing time from being consumed with simple software
errors.

We also developed a Unity simulation that communicates
with our software emulation in Docker, We wrote Unity C#
software to simulate the movement, sensor data, and vision
data of Argo with random statistical noise. The simulation also
enables us to evaluate our software’s behavioral logic within a
to-scale Transdec scene created by Team Inspiration (see Fig.
7).

To visualize the output of our software both in Docker
and on the real AUV, we created visualizations using RQt,
a ROS dashboard library. We leveraged RQt to graph data
and dynamically tune control parameters, allowing for easy
incremental testing.

Fig. 7. Testing the gate task logic using Docker and Unity.

ACKNOWLEDGEMENTS

The Michigan Robotic Submarine team would like to thank
our 2023 sponsors for their monetary support: Ford Motor
Company, Aptiv, Siemens, along with the University of Michi-
gan College of Engineering and Central Student Government.
In addition, we would like to thank our advisor Dr. Katie
Skinner for continuously supporting our team by advising us
and overseeing the Multidisciplinary Design Program which
allows members to earn class credit for their contributions to
our team.

We are greatly appreciative of the Marine Hydrodynamics
Lab staff, especially Jim Smith and Jason Bundoff, for gra-
ciously providing the team with an in-water testing location.

We also would like to thank the Wilson Student Team
Project Center facilities and Ford Motor Company Robotics
Building staff, especially Alyssa Emigh and Chris Gordan, for
hosting our team workspace, providing tools and resources,
and overall supporting our endeavors.

We are also thankful of Mariah Moss and Katelyn Killewald
from the Office of Student Affairs at the University of Michi-
gan College of Engineering for their guidance in developing
our team and assistance purchasing the materials that make
our work possible.

Lastly, we would like to thank the RoboNation team for
organizing the RoboSub competition. We are also thankful
for the hydrophone and image data provided through the
RoboNation data sharing program.

REFERENCES

[1] Inspiration Robotics, “RoboSub-Simulation”. Github.com.
https://github.com/InspirationRobotics/RoboSub-Simulation (accessed
June 11, 2022)

[2] A. Zelenak, “A PID controller for ROS”. bitbucket.org.
https://bitbucket.org/AndyZe/pid/src/master/ (accessed June 11, 2022)

[3] G. Jocher, “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU
and OpenVINO Export and Inference”. Zenodo, Feb. 22, 2022. doi:
10.5281/zenodo.6222936.

[4] P. Adam et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”, in Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

6

Michigan Robotic Submarine 7

APPENDIX A
SAMPLE TEST PLAN

The following is a test plan from a testing session at
the MHL on February 3rd, 2023. It has been adapted for
formatting and clarifying comments have been placed in
brackets.

A. Primary Tasks

• Drive around
• Tune heave PID [heave is the up/down axis]
• Tune yaw PID [yaw is the heading axis]

B. Drive around

1) Procedure:

• Boot up sub
• SSH into pi’s and start up services
• Connect to QGroundControl
• Set SYS ID = 1 and drive around sub

2) Expectation:

• Sub should be able to be driven around the MHL nor-
mally

3) Results:

• Expectation met

C. Test heave

1) Procedure:

• Start depth launch file [a launch file is a utility provided
by ROS to start related systems simultaneously]

• Start teleop launch file

2) Expectation:

• Sub should approach and remain at depth

3) Results:

• Some overshoot but stabilizes pretty well (see recorded
data) [data was collected using rosbag, a utility which
records published messages. Unfortunately, this data is
stored in a binary format not amenable to sharing]

D. Test yaw

1) Procedure:

• Start depth launch file
• Start yaw launch file
• Start teleop launch file

2) Expectation:

• Sub should approach and remain at yaw

3) Results:

• Stabilizes pretty well (see recorded data)
• Noticeable drift on IMU (see action items)

E. Overall notes

• PID tuning with dashboard works very well on one base
station

• Dependency issues on the other
• Switch power cable is delicate, needs to be positioned

certain way to work well
• Teleop launch files may have some minor bugs
• PixHawk IMU drifts significantly
• Need solution to better EStop the sub
• Collected rosbags of MAVROS topics

F. Action items

• Thruster came off – needs to be fixed (urgent)
• Fix package issues on other base station [the team has

two base stations we use for testing]
• Fix network switch
• Re-mount AHRS
• Check drift on PixHawk
• Purchase software EStop button, look into necessary code

7

Michigan Robotic Submarine 8

APPENDIX B
POWER ARCHITECTURE

8

Michigan Robotic Submarine 9

APPENDIX C
COMPONENT SPECIFICATIONS

center

Component Vendor Model/Type Specs Cost (if new) Year of Purchase
ASV Hull
Form/Platform

American Tooling &
Prototype

Custom 6061 Aluminum $3250.00 2022

Waterproof
Connectors

Blue Robotics Potted cable penetra-
tors

25mm long M10x1.5
for 6mm cable

$120.00 2020

Propulsion Blue Robotics T200 w/ Propellor 7-20V $1,074.00 2020
Power System N/A Custom N/A N/A N/A
Motor Controls Blue Robotics Basic ESC 7-26V $172.00 2023
CPU Nvidia Jetson Nano Quad-core ARM A57

@ 1.43 GHz, 4 Gb
RAM

$110.00 2021

Compass PixHawk PX4 Accel/Gyro:
ICM-20689 with
Magnetometer

$189.99 2022

Inertial Measurement
Unit (IMU)

PixHawk PX4 MPU6000 9-axis 189.99 2022

Doppler Velocity Log
(DVL)

N/A N/A N/A N/A N/A

Camera(s) Stereolabs, Blue
Robotics

ZED2, Low-light HD
USB Camera

stereo vision,
pathmarker detection

$449.00, $99.00 2020, 2021

Hydrophones N/A N/A N/A N/A N/A
Localization and Map-
ping

N/A Custom N/A N/A N/A

Vision N/A YOLOv5, PyTorch,
OpenCV

train convolutional
neural network and
perform classical
computer vision

N/A 2023

Localization and Map-
ping

N/A Custom N/A N/A N/A

Autonomy N/A Custom N/A N/A N/A
Open source software N/A Andy Ze ROS PID PID Control N/A N/A

9

