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Abstract—This report presents the comprehensive scope of
work carried out by MuddSub, a fully autonomous underwater
robotics team at Harvey Mudd College. As a student-led and
student-run organization, MuddSub aims to foster students’
interests in robotics, autonomy, and research by employing
experimental methods. This report highlights MuddSub’s compe-
tition strategy, which encompasses fundamental principles, novel
contributions to vehicular autonomy, and technical advancements
through systems engineering. By developing two autonomous
underwater robots, Crush and Alfie, MuddSub successfully
demonstrates its ability to facilitate short-term real-world devel-
opments, long-term technical developments, and novel research
initiatives using distinct physical platforms. This work begins
by introducing Crush, a new experimental underwater robot,
followed by improvements made to the team’s initial robot, Alfie.
The technical contributions discussed in this paper encompass
various domains, including controls, navigation, state estimation,
simultaneous localization and mapping (SLAM), mechanical
design, printed circuit board (PCB) design, and computer vision.
Each contribution is thoroughly detailed, providing insights into
the research methods deployed. Additionally, both high-level
and low-level design decisions are documented, underscoring the
team’s meticulous approach to system development. Through
these efforts, this research paper presents MuddSub’s commit-
ment to advancing underwater robotics by leveraging student-
led innovation, experimental methodologies, and the integration
of diverse technical domains. The findings provide valuable
insights to MuddSub’s experimental work in the field of vehicular
autonomy and robotics.

I. INTRODUCTION

The domain of underwater autonomous robotics presents a
distinctive opportunity for students and researchers to devise
innovative approaches to surmount the demands of noisy
and harsh environments. These challenges include accurate
object segmentation and identification in cloudy, low lighting
environments and extreme limitations in hardware due to
pressure and high impact of unintended flooding. Furthermore,
the scarcity of reliable grounding references in external stimuli
poses significant hurdles to achieve accurate localization and
mapping. Additionally, the influence of ocean currents and
turbidity can lead to undesired drift with often no method of
detection beyond internal sensors. To succeed in this domain,
students must learn and utilize advanced research methodolo-
gies that push the boundaries of their understanding, enabling
them to unravel the fundamental principles of autonomy and
undertake research endeavors that address future advancements
and unresolved challenges.

II. COMPETITION STRATEGY

To address these fundamental challenges, MuddSub has
undertaken the development of two distinct underwater robots,
Alfie and Crush. The original robot, Alfie, was purposefully

Fig. 1. Crush front profile.

Fig. 2. Alfie.

designed with simplicity in mind to emphasize reliability and
encourage real-world deployment sustainability. Alfie’s design
incorporates a factor of four safety margins for all hardware
components, utilizes off-the-shelf components for efficient
electrical signal filtering, and adopts a straightforward software
framework. MuddSub aims to make Alfie an approachable,
easy to use robot for incoming students and to test new ideas
through a modular software and electrical framework.

Conversely, Crush, the latest addition to MuddSub’s robotic
fleet, serves as an experimental platform that facilitates
long-term research and development of novel methodologies
through fundamental design modifications. Crush represents
a highly experimental undertaking, featuring a reduced size,
custom-designed printed circuit boards (PCBs), integration of
stereo cameras, and the incorporation of cutting-edge sen-
sors such as Doppler Velocity Log (DVL) and hydrophones.
Additionally, Crush implements an experimental software
framework that integrates newly developed research methods
specific to underwater robotics. Through these two distinct
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robots, MuddSub aims to address both short-term success
and long-term research objectives, catering to the multifaceted
demands of underwater robotics exploration. Crush allows
students to advance to complex research ideas and ensure
students can test cutting edge methods.

Since our first year in 2019, MuddSub has focused on
reliability and building within inherent constraints. Building
a simple robot has allowed for easily onboarding students
to the basics of autonomy, quick repair after failure, and let
students try how ideas compare to the real world. MuddSub
is organized into fourteen key subteams which develop clear
functional needs of the robot. Each specializes in a challenge
in underwater robotics with students who share interdisci-
plinary roles between teams to ensure easy transfer of data
and that challenges are solved between subfields. Student leads
evaluate functional performance of the robot alongside their
subteam and determine future directions of development. In
addition, students are encouraged to pursue projects of interest
related to autonomous robotics alongside peers, leading to
the development of several of these teams. MuddSub aims to
enable as much learning and exploration as possible through
encouraging peer learning, exploration beyond immediate per-
formance tasks, and funding experimental mini projects.

To accomplish its goals, MuddSub aims to pursue three
main objectives: short-term real-world developments, long-
term technical developments, and novel research initiatives.

III. DESIGN STRATEGY

A. Designing a New Robot: Crush

Fig. 3. Crush front profile.

In order to facilitate experimentation and enable the testing
of advanced methodologies, Crush was developed with signif-
icant fundamental modifications when compared to Alfie. One
notable distinction is the incorporation of two wide windows in
Crush, allowing for the deployment of a diverse array of stereo
cameras. These have enabled students to explore visual sensor
fusion between two stereo camera systems to build complex
discrete maps. With deployed cross comparisons of techniques,
fusion between multiple cameras, IMU, gyro, and depth, this
has lead to improved maps. An example of the team’s tested
IMU to Visual and depth data is included.

Crush is approximately half the size of its predecessor,
Alfie, which not only promotes a compact form factor but

Fig. 4. Fused IMU, depth, RGB SLAM result from testing sensor fusion
accuracy. Map of estimated path taken is in blue.

also necessitates the design of small, modular printed circuit
boards (PCBs) dedicated to power distribution, noise filtering,
and signal processing. The reduced size and weight of Crush
have been carefully considered to ensure safety during pool
testing, enabling enhanced maneuverability and operational
versatility in tight underwater environments. By optimizing
the design and employing lightweight carbon fiber materials,
Crush exhibits increased agility and improved responsiveness.
The body of Crush is fabricated from a shelled out aluminum
frame with carbon fiber printed sensor and motor mounts.

For increased fine-grained control, Crush uses a Lin-
ear Quadratic Regulator (LQR) with motion matrices found
through data collected in fluid simulation and real world force
to motion testing [1]. This helps account for drift. The team
also experimented with Model Predictive Control but found
it was very computationally intensive and requires online
computation at each time step for optimization.
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The team also experimented with learned navigation through
reinforcement learning. However, we found this was not reli-
able enough with noisy and extremely limited real world data.
Experiments were run in Gazebo for passing through the gate
with input images and output PWM values in sim. These were
not found to be successful largely due to latency.

B. Electrical : Crush and Replacing Alfie Components

The MuddSub electrical team focused on learning, bring-up,
and future development this past year. Initial efforts focused on
learning how Alfie’s subsystems work, to bring incoming team
members up to speed on the current state of the electronics.
There, the team championed a collaborative effort to teach
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Fig. 5. Overview of the whole system.

upcoming engineers the basics of communication protocols,
BLDC motor driving, schematic capture, PCB layout, bread-
board prototyping, and more. This resulted in a group of
students who had the drive and some background knowledge
to pursue the larger goal for the year: revamping the internals
of the robot with a vision of implementing them in Crush.

Further efforts focused on designing the signal and power
distribution boards for Crush. Previous electrical infrastructure
for Alfie has typically been large, clunky, and undocumented,
making it hard for newer members to contribute meaningfully
to the project. To aid these goals, board designs were done
carefully by justifying design decisions and having the docu-
mentation to back it up. The boards were designed with simple
goals in mind: the boards must be small and easy to use.

The signal board is the heart of the low-level software for
the robot: it hosted the Teensy 4.0 microcontroller, signal
isolation to prevent ground loops, all the ports and I/O the
robot would ever need, and a battery monitoring circuit. This
board was primarily designed by the team’s newer members,
as the intention was to have them build a simpler system and
learn as much as possible. The signal board handles powering
the thrusters, sensors like the depth sensor, and servos to power
grippers, torpedo, and marker actuators. KiCad was used for
the board design, as it is capable yet accessible to learners of
EDA software. Board layout is in progress, as supply chain
issues forced the team to change critical components such as
digital isolators multiple times throughout the design process.

The power distribution is responsible for giving appropriate
power to every component inside of Crush. This includes the
Jetson AGX Xavier computer, DVL, servo motors, and other
power-hungry systems. This board takes unregulated power
from the 4S LiPo battery and splits it into 12V, 9V, and 5V
rails for the robot’s systems. The 12V and 5V rails need to
be capable of high power, as the Jetson and DVL run on
the 12V rail, and all servos run off of 5V. The 9V rail uses
less power, so the design requirements are less strenuous.
The team estimated that having both the 12V and 5V rails
be capable of withstanding 10A would be sufficient for the
robot’s needs. This meant that the board required special care
in design due to high power draw. The team opted to use buck

Fig. 6. Schematic for signal board.

Fig. 7. Example of regulator board layout.

regulators, as linear regulators would dissipate too much heat
by stepping 16V down to 5V at 10A. The increase in efficiency
of using buck regulators comes with the trade-off of design
ease, as signal integrity and EMI have much stronger effects in
buck versus linear regulators. The team could have opted for
buying existing regulator boards, but they were too large and
expensive. However, the main reason for doing the design from
scratch was that designing high power buck regulators would
be an excellent learning experience for all of those involved, as
any circuit designer will benefit from having power regulation
knowledge.

Special care will be taken when testing this board, as it
powers expensive components. The team plans to stress-test
the board under typical and extreme loading conditions, which
include pulling the maximum current for extended periods of
time as well as testing quickly switching loads. The output
voltage will be closely monitored in these scenarios to ensure
that high transient voltages or over-current events do not
damage the systems. The board layout requires more care than
the signal board, as buck regulators require tight component
placement to minimize parasitic inductance and good routing
to ensure that feedback loops do not become unstable. An
example of the layout for the 12V regulator is shown below.
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C. Marker and Gripper : Alfie and Crush

The marker and gripper team focused on developing systems
to be used in competition, developing mechanical design skills
and creating immediate implementations.

The marker team experimented with different shapes for
the marker itself with the goal of finding the optimal shape
for accurate positioning. The team considered spheres and
torpedo-type shapes of various designs, but eventually settled
on dodecahedrons. Tests showed that dodecahedrons went
down the water with the straightest trajectory and had the least
chance to roll off if they landed on the edge of the target.
The marker holder was designed to be as small as possible to
hold both dodecahedrons on top of each other so they drop
in the same place. The markers are held by a bar, which is
rotationally actuated by a single servo to release the markers.
The servo is programmed to move at the highest velocity to
minimize the impact on the marker’s intended trajectory. The
team’s next steps include testing to make the markers as dense
as possible, so that any currents in the water do not affect
the trajectory as much. The mechanical design of the arm to
hold the markers will also be further investigated in hopes of
improving the performance.

Fig. 8. Picture of gripper and marker prototypes.

The gripper team focused on firmware development and
mechanical design. Many spring stiffnesses were tested for
the gripper, as a spring is used to hold the claws back in
their “holding” state. A servo then pushes against the springs
to open the claws. The gripper team also worked to develop
firmware for the gripper. Near the end of the year, many of the
components fell apart, so future work will involve investigating
how the gripper mechanism can be made more robust.

D. Simultaneous Localization and Mapping (SLAM) : Alfie

This year, the team continued development on our SLAM
sub-system, after first implementing it in 2021. SLAM utilizes
sensor inputs in order to simultaneously perform localization,
determining where the robot is relative to its surroundings,
and mapping, determining where a robot’s surroundings are
relative to it. This sub-system is essential to our competi-
tion strategy, as it enables short-term success in competition
by aiding our navigation sub-system, allows for continued
development of our robot’s autonomy in the future with

enhanced localization and mapping capabilities, and provides
opportunities for research work on SLAM methods.

We have continued with the algorithm we identified in
2021, FastSLAM 2.0 [2] [3]. Previous versions of Alfie have
primarily used vision for sensing, but with Alfie we also have
a Doppler Velocity Log (DVL), an Inertial Measurement Unit
(IMU), as well as a depth/pressure sensor. FastSLAM is a
good choice over visual SLAM methods, as it has allowed for
the extensibility we now make use of in our current design
iteration, and will allow for us to make use of the stereo vision
capabilities we have been working on.

There are two main parts of FastSLAM [4]: The first is the
motion model which describes how the robot’s state evolves
over time:

p(st|ut, st−1) = h(ut, st−1) + δt. (4)

The second is the measurement model which describes how
the sensors generate measurements given the state of the robot
and environment:

p(zt|st−1,Θ, nt) = g(st, θnt
) + εt. (5)

For development of this system, the team worked to move
the system from design choice to implementation. We worked
to develop a prototype implementation of the algorithm in both
Python and C++. In addition, we have worked to produce a
final implementation of the algorithm for use in Alfie, with
hopes of making use of it in competition.

Finally, we have worked to further our understanding of the
fundamentals of SLAM. Since the subteam contained expe-
rienced team members, they dedicated time to teaching new
students what they had learned about state estimation. The new
students were taken through a SLAM crash course, learning
about probabilistic robotics algorithms such as Kalman filters,
particle filters, and grid mapping. They also implemented
particle filter localization for themselves, and contributed to
the implementation of FastSLAM.

E. Navigation and Controls : Alfie

The navigation sub-system is responsible for planning the
robot’s trajectory. This sub-system works closely with the state
machine and SLAM sub-systems. The state machine tells the
robot where it should go in order to accomplish its current task,
and the SLAM sub-system tells the robot where it currently
is in its environment. Navigation combines these pieces of
information to produce a series of poses for the robot to follow
to get from a starting location to some goal location. The
Navigation subteam implemented the A* algorithm for motion
planning. It takes as its input a grid map showing what parts of
the space are occupied and outputs a path along that grid that
the robot can safely take. This past year, we experimented with
different heuristic functions. The subteam also wrote code to
generate trajectories that have specific shapes. For example, it
is useful to have the robot move in a sine wave in order to
take measurements of obstacles at different angles to gather
increased information for SLAM. Another example is planning
a circular path around some obstacle in order to allow the



MuddSub 5

cameras to view it from many different angles. For controls,
Alfie uses PID on its thrusters to achieve desired thrust.

F. State Machine: Alfie

Fig. 9. State machine diagram

The state machine is responsible for directing robot behavior
during tasks and emergencies. The team has implemented
several important aspects of the state machine in smach. The
state machine starts in the ”WaitToStart” state then provides
into the task layer when prompted. Each task in the com-
petition shares three steps, which are represented by three
states: ”SearchForTarget,” ”GoToTarget,” and ”TaskSpecific.”
This modular structure allows for code reusability for different
tasks. Specifically, only the ”TaskSpecific” state needs to
be modified for each task. Finally, the task layer is used
concurrently with the ”MonitorKillSwitch,” which responds
to emergency shutdown situations.

G. Computer Vision: Alfie

Fig. 10. A GUI for testing object detection models using data augmentation
on demand.

Alfie runs YOLOv3 [5] based object detection. The object
detection model identifies whole game pieces as well as their
internal parts. For example, it detects both the Gate as well
as the middle bar of the Gate. Detecting main game pieces
allows Alfie’s to find landmarks from afar while the interior
detections allow for fine grain control at near range. The
module publishes confidence, classes and bounding boxes
which are used by SLAM and the state machine. To implement
this system, the team fabricated sample game pieces and
created a labeled dataset. A YOLOv3 model was trained on
this dataset using Google Colab. The current model is able to
detect gates but produces many extra incorrect detections. We
hope to continue tuning this model to improve its precision.

A next step for object detection is to transition to object
tracking using Deep Simple Online and Realtime Tracking
(SORT) [6]. The envisioned object tracking pipeline will start
with YOLOv3 to detect bounding boxes, a feature extractor
to extract appearances from objects in the bounding boxes,
and finally the SORT algorithm to track similar objects in
subsequent frames.

IV. TESTING STRATEGY

Fig. 11. Alfie underwater.

A. SLAM
The SLAM subteam validated the implementation of the

FastSLAM 2.0 algorithm against the MRCLAM dataset [7],
a dataset published by the University of Toronto. It consists
of measurements taken by wheeled robots with cameras to
identify landmarks, as well as groundtruth location data. The
estimated locations of the robots and landmarks output by the
FastSLAM 2.0 algorithm could be compared against the true
locations recorded by external sensors.

Fig. 12. SLAM results on MRCLAM dataset.

This dataset provided an easy way to validate the algo-
rithm’s implementation and was vital in testing and debugging
the code. It is also much easier to do so with a dataset rather
than the robot because it allows for testing of the SLAM code
before the rest of the systems necessary for the code to work
are in place. One large downside though is that the dataset
does not accurately represent the 3D underwater environment
present in the RoboSub competition.
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B. Navigation

Mock grid maps were created for the purposes of testing
the navigation subsystem. The grid maps were populated with
obstacles and different heuristic functions were tested with
them. Certain heuristic functions resulted in less searching
before a path was found.

Fig. 13. Navigation comparisons with variable distance functions.

C. Controls

The control system consists of two components – PWM
and PID. To test the PWM, we implemented a rqt GUI that
publishes thruster values (0-100) to each motor individually.
To test the PID offline, we provide an endpoint to the controls
service. We create a mapping from thruster values to linear
and angular velocities. Using these velocities, we can calculate
where we expect the robot to be and publish this information to
the controls system. Metrics we use are the rise time, settling
time, overshoot, and stable state errors.

D. Computer Vision

Initially, the computer vision model’s IoU, precision, and
recall are tested on a test dataset of 100 labeled images. We
further test our models using a data augmentation gui. This
method provides more control to the user. Finally, the models
are tested on robot in an underwater environment. The camera
footage is recorded in rosbags for offline testing.

E. State Machine

The state machine is tested with scripts that mock sensor and
subsystem outputs, such as detected objects and robot position.
These messages forces state machine into predicable states.
Finally, we verify the state machine behavior through logs.

F. Hardware

All hardware testing will be done before any other compo-
nents are tested, to ensure that issues we encounter are not
hardware-related.

The most important thing to test for an underwater robot
is its waterproofing. When testing our O-ring seals, we take
out all electrical components and submerge the robot into the
water, then ensure no flooding occurs. To test our electrical
system, we test each sensor individually using a microcon-
troller or computer, depending on what hardware interface the
sensor uses. In addition, basic actuation of mechanisms will
be tested with a microcontroller.

G. Overall System

In order to ensure that all subsystems work together, many
rounds of testing are required. The first round focuses on
making sure that all robot hardware is operational underwater.
This includes testing motors and collecting all sensor data in
ROS bag files, which is essential for debugging later. The
computer vision subsystem also requires testing at this point,
which is made easier when real data is collected by the robot.
The next round of testing focuses on state estimation. Getting
the SLAM subsystem working early is essential because nearly
every other subsystem relies on it in some way. Without an
estimate of the robot’s location and current state, it is impos-
sible to plan what tasks should be performed and impossible
to navigate reliably. After state-estimation comes controls, i.e.
the subsystem that enacts the commands given to the robot.
Some control system is necessary in order for the navigation
subsystem to work. Finally, the last subsystem to be integrated
and tested is the state machine. This subsystem relies on all
other subsystems to varying degrees. However, it is possible to
forego some of the more complex navigation algorithms for
path planning for the purposes of testing the state machine.
For example, the robot could just be commanded to follow a
straight line until it reaches the destination for the next task.
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