
 Troy SPEAR 1

 Troy High School NJROTC
 RoboSub Technical Design Report

 Kaleb Lee, Thomas Nguyen-Ta, Derek Peng, Puru Jain, Pali Jain, Raina Ban, Bruce Deng, Mateus
 Noronha, Aidan Chen, Aaron Li

 Abstract — The Troy High School NJROTC
 RoboSub team’s Autonomous Underwater
 Vehicle (AUV), Sea++, was designed to
 compete in the 2023 RoboSub competition.
 Our first-year team of 10 high school
 students designed Sea++ using off-the-shelf
 components and developed software using
 Python and C++. Designing Sea++ allowed
 our team to learn how to use YOLO v4,
 ROS, a proportional integral derivative
 (PID) controller, and power distribution
 boards (PDBs). Our use of a single AUV was
 primarily driven by time and resource
 constraints and allowed our team to focus on
 Sea++’s design and reliability. We used
 virtual collaboration tools including Discord,
 GitHub, and more. We set out to create a
 basic framework and system to compete and
 build on in future years.

 I. C OMPETITION S TRATEGY

 The competition course this year, Whirlpool
 X-treme, is a continuation of last year’s
 competition. This course consists of 5
 components:

 (i) Destination (Gate)
 (ii) Start Dialing (Buoy)
 (iii) Location (Bins)
 (iv) Goa’uld Attack (Torpedoes)
 (v) Engaging Chevrons (Octagon)

 As a new team competing for the first year with
 an AUV, our overall approach to this
 competition was to tackle the most fundamental
 components of the course first, such as the gate
 and surfacing task, and then move onto tasks

 that were more complex in order to maximize
 the number of points that we could score
 consistently within the time allocated.

 A. Number of AUVs

 As per rule 4.3.2 of the RoboSub 2023 Mission
 and Rules, each team is allowed to enter up to
 two vehicles. [1] While this option was
 considered by our team as it would decrease the
 time in the pool and improve task
 specialization, we ultimately decided against it
 due to the increased cost and complexity. Our
 team determined that investing our time and
 resources into one submarine would not only
 allow us to reduce complexity in our setup but
 also allow us to allocate more time towards
 perfecting advanced systems that would enable
 us to complete tasks with greater precision. As
 Sea++ runs more extensive trials, our team will
 modify our design according to the results.

 B. Task Prioritization

 As a first-year team, we recognized that giving
 each task an equal amount of time would result
 in our AUV not being able to properly
 complete any of the tasks. Therefore, during the
 planning process, we opted to allocate each of
 the tasks a different amount of time and
 prioritized the tasks in the following order:
 Destination (Gate), Start Dialing (Buoy),
 Location (Bins), Goa’uld Attack (Torpedoes),
 and Engaging Chevrons (Octagon). This was
 mainly determined by how equipped our
 sensors and tools were to focus on them.

 Troy SPEAR 2

 Fig. 1. The 2023 course diagram with task prioritization
 labeled

 The order was also selected based on
 requirements (navigating through the gate is a
 required task and thus was our top priority),
 point values, and ease. It was also extremely
 efficient, as the AUV wouldn’t need to repeat
 certain paths. The prioritization can be seen in
 the submarine’s design and software.

 II. D ESIGN C REATIVITY

 A. Overall Design (Mechatronics)

 The main goal for Sea++ was to create an AUV
 that is reliable and modular, given our lack of
 manufacturing equipment. With this, our
 mechatronics subteam settled on using the
 BlueROV2 R2 frame, due to its high support
 for off-the-shelf components, and durable
 frame. Our design process was also heavily
 driven by the complexity our electrical and
 software subteams would have to endure

 implementing the solutions.

 Fig. 2. Corner view of Sea++

 (i) Cameras

 Sea++ utilizes 2 mounted lowlight cameras
 with continuous video capture as its primary
 vision input. Both cameras have been placed
 perpendicular to each other to ensure Sea++’s
 efficient scanning of its environment. The
 front-facing camera is utilized for odometry
 and localizing the AUV’s position relative to
 the gate and buoys. The bottom camera is
 mounted to detect the symbols and allow
 Sea++ to center itself accurately. This setup
 was chosen for its cost-efficiency, reliability,
 and simplicity.

 (ii) Sonars

 As a backup solution for our vision system,
 Sea++ utilizes 2 BlueRobotics’s Ping Sonar
 Altimeter and Echosounder for reliable object
 location and obstacle avoidance. The sonars are
 positioned to the immediate left and right of the
 forward facing camera, in the case our front
 facing camera fails or can’t detect the next task.
 Computer vision is preferred over this method
 due to the versatility and resolution of the data
 extracted.

 (iii) Kill switch

 The kill switch consists of a waterproof switch

 Troy SPEAR 3

 which is attached on the rear of Sea++ allowing
 for ease of access. This switch is inline with the
 cables which carry power from the battery
 compartment to the upper compartment. This
 switch will kill power to the motors, as well as
 any other systems aboard Sea++.

 (iv) Claw

 To balance between hardware and software
 challenges, our team chose to use a modified
 BlueRobotics Newton Subsea Gripper. This
 assembly consists of the gripper itself as well
 as a custom 3D printed attachment, which
 allows Sea++ to complete any tasks which
 require picking things up. The custom 3D
 printed part includes a 90 degree bend in the
 jaws allowing the claw to grip the lids from
 above and not have to weave in between the lid
 handle, reducing the complexity required to lift
 it. The two rods protruding from the front of
 this attachment act as forklift arms allowing
 Sea++ to lift up the chevrons, which would be
 too big to fit within the bent jaws. The carbon
 fiber rods’ diameters, approximately 4mm,
 were chosen to be big enough where the load of
 the chevrons at the end of them would not be
 an issue, while being enough to easily fit in the
 space between the chevrons.

 (v) Computer

 Sea++’s onboard computer is an NVIDIA
 Jetson Nano. It runs most of Sea++’s software
 including the object detection algorithm,
 mission planning, and more. Our team chose to
 use an NVIDIA Jetson Nano over a Raspberry
 Pi due to its quicker I/O ports and better
 processor. Additionally, its compatibility with
 our software made it more straightforward to
 work with.

 B. Software Overview

 (i) Mission Planning

 Our team narrowed down our options to either
 a Finite State Machine (FSM) or using a
 behavior tree. We ultimately chose to utilize a

 behavior tree, using BehaviorTree CPP with
 ROS for high-level decision making, due to its
 simplicity and flexibility. As a first-time team,
 its capabilities in abstraction and easy
 management of nodes made it a suitable choice
 for use. A FSM would overcomplicate our
 design and make scaling and further
 development exponentially more difficult.
 Additionally, its specific integration with ROS
 made it the optimal choice. Its ability to be
 configured and altered during runtime makes it
 easy to test and fix in a competition or testing
 environment.

 (ii) Computer Vision

 Our strategy in completing tasks, notably Start
 Dialing (Buoy), involved using computer
 vision for most navigation and decision
 making, especially as we did not utilize
 hydrophones this year. We used YOLO v4 and
 its resources in using Path Aggregation
 Networks and Cross Stage Partial Networks in
 conjunction with OpenCV and Tensorflow for
 optimization. [3] We opted to not utilize the
 newer versions of YOLO due to YOLO v4
 being more accurate and faster for our needs.
 We utilized a loss function to minimize the
 error and used YOLO v4 to disentangle the
 data. In order to make it more accurate, we
 leveraged the extraction of the useful data. In
 the live environment, our computer vision uses
 edge extraction to only consider the edges of
 images that it uses to identify symbols in Start
 Dialing(Buoy).

 Troy SPEAR 4

 Fig. 3. Demonstration of edge extraction on symbols in
 Start Dialing

 Though Sea++ utilizes the BlueRobotics
 Low-Light HD USB Camera, which is
 calibrated for underwater low-light conditions,
 we noticed glare and tint from the water
 impacted our computer vision performance. To
 combat this, we implemented Sea-Thru, an
 algorithm designed by Derya Akkaynak, which
 in turn also gave our team more flexibility for
 obtaining training data. [3] With minimal issues
 with color, our team can use training data from
 on land and in the simulator without the need
 for replicating the effect.

 Fig. 4. Non-color corrected image on the left and image
 with Sea-Thru algorithm applied on the right

 (iii) Architecture and Navigation

 To operate efficiently and autonomously in an
 underwater environment, we rely on a series of
 processes. These processes work together in a
 coordinated and consistent manner, utilizing
 different algorithms to navigate and accomplish
 tasks. [4] For communication between different
 algorithms and parts of the system, we used the
 publisher/subscriber model provided by ROS,
 and then MAVROS to communicate over
 MAVLink to our Pixhawk PX4.

 For navigation and localization, we used the
 IMU provided by the onboard Pixhawk and
 computer vision to identify our position within

 the environment. Our onboard sonar acted as a
 supplement, as it was not as accurate as vision
 localization in our research and experience. We
 have worked around the lack of a Doppler
 Velocity Log (DVL) due to the high cost and
 our low budget. Using proportional integral
 derivative (PID), Sea++ can adjust the PWM of
 the motor to get to the location more accurately
 according to the velocity collected by the IMU.

 Fig. 5. Software Diagram illustrating our system
 organization

 The steps taken by Sea++ after an object is
 detected are split into 3 stages:

 Initial Detection - Sea moves around the area of
 the pool it is in until it recognizes an object
 significant to the current task.

 Repositioning - Once the submarine finds the
 object it is searching for, it repositions itself so
 that the object is in the frame of the
 forward-facing camera and on the same level as
 it.
 Distance detection - Using localization with the
 known height and width of the object, Sea++
 calculates its relative position to the task with
 the front camera.

 Troy SPEAR 5

 III. E XPERIMENTAL R ESULTS

 A. Cameras

 The first aspect of Sea++ that needed to be
 tested was the vision algorithm. This was
 arguably the most integral aspect of Sea++ if it
 were to succeed in the competition. We needed
 to test if it was able to correctly identify objects
 and images based on the database we provided.
 Sea++’s vision algorithm utilizes a framework
 that allows for us to switch between databases
 in a single line of code. Thus, we are able to
 use different databases instantaneously to
 identify numerous images and objects.
 Once we have completed the vision algorithm,
 we began the testing phase. We initially
 manually inputted images into the algorithm.
 Some of these images include an underwater
 shot of a pool to test as a baseline, and
 homemade orange markers and other pictures
 similar to the one used for the competition to
 see if the vision algorithm could successfully
 identify it. Once the algorithm could correctly
 identify all of the images, the same process was
 repeated for the cameras on the AUV.
 For testing movement and testing without
 having to use the AUV, we used BlueROV2’s
 simulator [5], powered by Gazebo. By using an
 emulated flight controller, Ardupilot’s SITL,
 we were able to send commands, sending
 feedback from the simulator to the virtual AUV
 in a loop.

 Fig. 6. BlueROV2 Simulator in Gazebo shown

 For in-person testing, we used our school’s
 pool. However, it lacked significant depth and
 therefore was not an accurate modeling of an
 actual competition environment. Therefore,
 more testing is required at the competition
 venue.

 Fig. 7. Picture of Sea++’s during an underwater trial

 IV. A CKNOWLEDGEMENTS

 Our team could not have functioned without
 guidance from our mentor, Lt. Roger Fronek,
 and support from our generous sponsors. We
 would like to thank the following organizations
 for sponsoring our team: Troy High School
 NJROTC Booster Club, Raytheon
 Technologies, Armed Forces Communications
 and Electronics Association, Navy League of
 the United States Inland Empire Council, and
 the Navy League of the United States STEM
 Institute. Lastly, we would like to thank Team
 Inspiration and CSULA Robosub for helping us
 better understand the competition and how to
 set up our AUV. Without the support of any one
 of our sponsors, we would not have been able
 to progress as far as we have.

 Troy SPEAR 6

 V. R EFERENCES

 [1] “Resources.” RoboSub , Available:
 robosub.org/resources/ (2023/06/16).

 [2] Akkaynak, Derya. “Sea-Thru.” Derya
 Akkaynak , Available:
 www.deryaakkaynak.com/sea-thru
 (2023/06/16).

 [3] Supeshala, Chamidu. “YOLO v4 or YOLO
 v5 or PP-YOLO?” Chamidu Supeshala ,
 Available at:
 https://towardsdatascience.com/yolo-v4-or-yolo
 -v5-or-pp-yolo-dad8e40f7109 (2023/06/16).

 [4] Iranmehr, Masoud. “YOLO v4 or YOLO v5
 or PP-YOLO?” Masoud Iranmehr , Available
 at:
 https://pypi.org/project/mavros-python-exampl
 es (2023/06/16).

 [5] “BlueROV2 ROS Simulation”
 UUVControl , Available at:
 https://github.com/UUVControl/bluerov2
 (2023/06/16).

 Troy SPEAR 7

 A PPENDIX A: C OMPONENT S PECIFICATIONS

 Component Vendor Model/Type Specs Qty Total Cost

 Submarine BlueRobotics BlueROV2

 Acrylic - 100m
 Fathom ROV Tether
 (ROV-ready) (1
 Twisted Pair) (50m)
 Lumen Subsea Light
 (Pre-Connected Sets)
 (2)
 Newton Subsea
 Gripper 1 $4,050.00

 Battery Turnigy
 Turnigy Graphene Panther
 5000mAh 4S 75C - 1 $81.74

 CPU Nvidia Jetson Nano
 GPU and 4 GB of
 RAM 1 $98.95

 Camera BlueRobotics Low-Light HD USB Camera - 1 $80.10

 Pinger Localization BlueRobotics
 Ping Sonar Altimeter and
 Echosounder

 BLUART USB to
 TTL Serial and
 RS485 Adapter 2 $558.00

 3D Printer
 Filament Polymaker PolyMide™ PA6-CF

 1.75mm
 0.5kg 1 $44.99

 Battery Bags Amazon
 Tenergy 2 Pack, Fire Retardant
 Lipo Bags - 1 $11.99

 Kill Switch Amazon
 Hmknana IP67 Waterproof
 Inline Cord Switch

 IP67
 12V-24V
 20A 1 $14.99

 Tether Spool Amazon Woods E103 E-103 Wheel - 1 $17.63

 Controller Amazon
 Logitech F310 Wired Gamepad
 Controller - 1 $15.19

 Torpedo
 Propulsion Amazon Crosman CO2 Cartridges 50-Count 1 $24.85

 Algorithms: vision - -
 Sea-Thru, YOLO v4
 Object Detection - -

 Algorithms:
 localization and
 mapping - - - - -

 Open source
 software - -

 ROS Melodic,
 OpenCV, YoloV4,
 Tensorflow - -

 Team size (number
 of people) - - 10 persons - -

 Troy SPEAR 8

 Expertise ratio
 (hardware vs.
 software) - - 5 mech to 5 software - -

 Testing time:
 simulation - - 14 hours - -

 Test time: in-water - - 7 hours - -

 Programming
 languages - - Java, Python, C++ - -

