
Technical Design Report

Stanford Robosub

Prepared for the Robosub 2024 Competition

Contributors

Software: Selena Sun*, Scott Hickmann, Miyu Kojima, Yuanzhe Dong, Ali Ahmad, Rhea Malhotra,
Nathan Elias, Thomas Deng
Mechanical: Lawton Skaling*, Yohannes Aklilu, Ruben Carrazco, Juan Castillo, Marcellina Chang,
Vanessa Chen, Arden PBW, Lauren Sibley, Stanley Zhou
Electrical: Vassilis Alexopoulos*, Ryota Sato, Angelina Krinos, Coco Layton, Elijah Kim
Operations: Amy Dunphy*, Rhea Malhotra, Angelina Krinos, Vassilis Alexopoulos, Lawton Skaling,
Selena Sun
*indicates team lead

https://www.stanfordrobosub.org/


Stanford Robosub 1

0.1 Abstract

Given that Stanford Robosub was recently formed in February 2024, our strategy for the 2024 competition
is based on reliability and simplicity focusing on three key tasks: Rough Seas, Enter the Pacific, and
Hydrothermal Vent. Our goal for this competition is to compete with platform hardware that performs
well on the aforementioned tasks, which can then be easily built upon in future years for increased
complexity. Our targeted approach to task completion is informed by the belief that a high level of
execution within a finite number of tasks is better than lackluster execution across more tasks. This report
discusses the design decisions made to integrate software, mechanical, and electrical goals into Robosub’s
constrained underwater environment, as well as how those goals align with our broader competition
strategy. We also discuss testing methodologies that have helped us prepare and iterate on our vehicle
in preparation for Robosub 2024.

0.2 Acknowledgements

Participating in the Robosub 2024 competition has been a collaborative effort that extends beyond the
core team. We would like to express our gratitude to the following individuals and organizations for their
invaluable support:

• Sponsors: Stanford Student Robotics, Stanford Robotics Lab, Movella, Stanford Moonshot Club

• Stanford Student Robotics: Andy Tang, Michal Adamkiewicz, Amy Dunphy, and Archer Date
for their wisdom and logistical leadership.

• Lab64 @ Stanford: Jeff Stribs for welcoming the club into the space and providing us with a
workspace during the school year.

• TartanAUV: Micah Reich, Tom Scherlis, Rylan Morgan, and Rishabh Jain for their guidance on
founding the club and technical implementation.

• Professor Oussama Khatib: For his technical guidance, support in providing course units, and
enthusiasm.

Technical Content

1.1 Competition Strategy

When we started in February, our V0 AUV design was informed by the bare minimum hardware nec-
essary to perform well at tasks necessitating precise movement and localization. Given the six-month
crunch to build the software, mechanical, and electrical systems entirely from scratch, we decided to
avoid overcomplicating our design with additional points of failure – such as torpedoes or environmental
manipulation. We hope future Stanford Robosub teams will build upon V0, using it as a solid foundation
for tackling these more advanced tasks.
As such, we narrowed our competition strategy down to three target tasks: Rough Seas, Enter the Pacific,
and Hydrothermal Vent. Each task involves significant vision and localization requirements, which we
prioritized in our system. Sensor fusion of our doppler velocity log (DVL), inertial measurement unit
(IMU), and camera systems allows us to locate task markers using a “you only look once” (YOLO) de-
tection algorithm while achieving precise, autonomous movement across our AUV’s 6 degrees of freedom.
This setup is sufficient for completing the aforementioned tasks.

1

https://stanfordstudentrobotics.org/
https://lab64.stanford.edu/
https://www.tartanauv.com/
https://khatib.stanford.edu/


Stanford Robosub 2

Several design trade-offs were evaluated to reach our current configuration. Firstly, our camera and DVL
are fixed relative to the AUV, with the camera facing forward and the DVL pointing downward. This
setup simplifies the autonomy stack by ensuring that camera and velocity measurements are captured in
consistent movement frames. However, it restricts navigation to AUV orientations that keep the DVL
parallel to the pool floor. This particular DVL was generously provided by Professor Oussama Khatib
due to cost constraints, and has a tight field of view that exacerbates the above orientation restrictions.
Additionally, our single forward-facing camera necessitates periodic 360-degree yaws for situational aware-
ness, slowing down course navigation. This also complicates backward movement since there’s no rear-
facing camera for object detection and avoidance, requiring a 180-degree yaw when the direction of motion
needs to be reversed. The absence of additional cameras simplified the mechanical design, as all cables
interfacing between the inside and outside of the AUV are routed through a steel plate with wet link
penetrators. A back-mounted camera would require replacing this plate with a transparent acrylic and a
more custom wiring solution.
From a reliability perspective, reducing system complexity translates to fewer error modes across the sub-
systems that might need to be addressed. Our approach significantly simplifies the cross-team integration
process, as having all components in a unified enclosure reduces the need for extensive coordination re-
garding waterproofing and mounting. By ensuring that our primary vision and localization components
are robust and well-integrated, we were able to focus our limited preparation time on testing and refining
these critical capabilities rather than managing the complexities of additional subsystems.

1.2 Design Strategy

1.2.1 Mechanical Design

Figure 1.1: CAD Design

Hardware design constraints for V0
were largely informed by target tasks
and by software needs to achieve those
target tasks. Early in the design pro-
cess, it was clear that having six de-
grees of freedom for movement was nec-
essary to achieve any level of accurate
in-water localization. As such we uti-
lized eight thrusters; four were mounted
perpendicular to the pool floor for depth
control, and four were mounted paral-
lel to the pool floor, each at 45-degree
offsets from one another (Figure 1.1).
Mounting with 45-degree offsets allows
the AUV to move forward, backward,
and strafe with ease.
For computing, we elected to use a Jet-
son Orin – this runs all ROS2-related
code, logs data from our various sensors,
and runs YOLO/controller algorithms.
Fast performance is key for movement
accuracy, hence why we selected such a heavy option. We also selected an Xsens IMU that minimizes
drift, Oak-D cameras for vision and a (generously donated) Teledyne ExplorerDVL.
The frame of the AUV is made from 15mm aluminum extrusion. We elected to trade size and weight
for versatility, giving flexibility in where we mount different components to reduce integration and design
complexity. The electronics tube is an 8-inch inner diameter acrylic tube from Blue Robotics, 24 inches
long. This provides ample space for mounting. The tube is designed with all penetrators routed through
the back, enabling the plastic shield to slide on and off without the need to unplug any wires, thereby
streamlining maintenance and adjustments.

Two steel beams are attached to the bottom of the sub. This lowered the center of gravity to provide
passive stability, and offset the large buoyant force caused by the electronic tube volume. Figures 1.2 and
1.3 show the mass and volume breakdown of the major systems of the sub.

2



Stanford Robosub 3

Figure 1.2: Weight Breakdown Figure 1.3: Volume Breakdown

1.2.2 Electrical Design

Figure 1.4: Electrical Sub-system Diagram

Given the above hardware, we analyzed system
peak power requirements before choosing our bat-
tery chemistry: a 4S (14.8V) 20C 13000mAh LiPo.
This battery’s high discharge rate and amper-
age ensure continuous operation of all subsystems,
even during peak power draw. Thrusters are
driven directly off this 14.8V line, which passes
through a current breaker for short protection.
The thrusters are powered by a three-phase system
supplied by off-the-shelf ESCs from Blue Robotics.
These ESCs take in 14.8V and allocate three-phase
power based on a PWM signal provided by a mi-
crocontroller.
The Orin interfaces serially with this microcon-
troller. The basic flow involves the Orin providing
thrust allocations to the microcontroller, which are
then instantiated on eight PWM lines. The micro-
controller also interfaces with I2C-based peripher-
als, including an inline current/voltage sensor on the battery, an internal temperature sensor to monitor
component overheating, an internal pressure/humidity sensor to track leaks, and an internal display for
key metrics. These readings are communicated to the Orin via a custom-designed packet structure.
The overall electrical system diagram is shown in Figure 1.4. A custom PCB facilitates power distribution
of the 14.8V line via three power MOSFETs. These MOSFETs can turn the thrusters on or off when
either the externally mounted kill switch is triggered or when the microcontroller sends a reset command.
The PCB was designed with thermal tolerances in mind; it features large thermal reliefs, traces, and a
thick, two-layer stack-up.
The microcontroller also has the capacity to perform a soft reset of all onboard systems by power cycling
the Orin and the DVL via a series of 18V relays. We opted for a system design incorporating both an
Orin and a microcontroller to simplify the software stack by keeping high and low-level code separate.
This design also allows for a hardware watchdog in the form of the microcontroller in case of higher-level
system failures, adding an additional layer of safety during autonomous operation.

1.2.3 Software Design
In our first year, we focused on building the core pillars of the autonomy stack. We designed the stack to
be modular and extensible. Our stack was divided into four modules: localization, perception, mission
planning, and GNC. We chose ROS2 as our software framework for its ease of use, integration with the
Gazebo simulator for testing, and community support.

Localization

We use three sensors for localization: an IMU (Movella MTi-200), a DVL (Teledyne Explorer DVL), and
a depth sensor (BlueRobotics 10m Depth Sensor). The state is a size 13 vector:

[x, y, z,−→q , u, v, w, p, q, r, u̇, v̇, ẇ]

The state variables are computed as follows:

3



Stanford Robosub 4

1. x, y, z: cartesian robot position. The IMU’s accelerometer and DVL’s measurements are fused via
an EKF to give x and y, and depth sensor measurements are added to compute z.

2. −→q : quaternion representation of the robot’s orientation, found by integrating the IMU’s gyroscope
angular velocity measurements.

3. u, v, w: linear velocity of the robot, found through fusing the IMU’s accelerometer and DVL’s
measurements via an EKF.

4. p, q, r: angular velocity of the robot, measured directly by the IMU’s gyroscope.

5. u̇, v̇, ẇ: linear acceleration of the robot, measured directly by the IMU’s accelerometer.

The IMU and DVL are clock-synchronized before they’re read by their respective rosnodes. Syn-
chronization is important because position is found via integration of both the IMU and DVL’s velocity
estimates, so timing errors will significantly degrade our position estimate over time.

Figure 1.5: Rosnode diagram of the localization stack

Perception

We train a YOLOv8 model for classification of three objects: a red arrow, a blue arrow, and a buoy. Since
we only intend to do the Enter the Pacific (Gate) and Hydrothermal Vent (Buoy) tasks, this three-way
classification is enough to support the mission. We trained the model as follows:

1. Collected videos of the three objects in a pool

2. Extracted approximately 2,000 frames from the videos

3. Augmented the images (rotation, shear, zoom, position)

4. Labeled the images with bounding boxes

5. Trained a YOLOv8 model

We expect lighting conditions to be different at the competition venue, so we will likely need to re-collect
data and retrain the model.

4



Stanford Robosub 5

Figure 1.6: YOLOv8 inference on the blue arrow, red arrow, and buoy

The inference results in 2D bounding boxes, labels, and probabilities. The 2D bounding boxes are then
mapped to 3D positions, and the estimated locations of the three objects are updated via a 3D Kalman
Filter. The global positions of the objects are stored in a map.

Figure 1.7: Rosnodes diagram of the perception stack

Mission Planning

The Mission Planner is responsible for coordinating the perception, localization, and control stacks to
complete parts of the mission. The planner coordinates between tasks with a finite state machine,
switching between and retrying tasks depending on the task outcome. The task outcome is decided by
each Task Planner. The Task Planner surveys for its object of interest, determines high-level waypoints
to complete the task, and evaluates the success of the task attempt.
Separating the Task Planner from a higher-level Mission Planner provides two key benefits:

• The mission can be easily extended to include additional tasks in the future.

• Each task can be isolated for focused testing and development.

Guidance, Navigation, and Controls

Given waypoint objectives from the Mission Planner, each Task Planner is responsible for generating a
path that’s free from obstacles. For most tasks, we generate a straight line trajectory with a trapezoidal
motion profile (positive acceleration, no acceleration, negative acceleration) to reach a full stop at the
next waypoint.
The motion planner takes a list of predetermined waypoints defined by desired positions, orientations,
and generates a list of intermediate waypoints through linear interpolation. During runtime, a “follow the
carrot” algorithm is employed to find the furthest point on the path constrained to some radius around
the AUV. This point is passed into the controller which responds by moving the AUV towards the point.
Once the AUV has moved, there is a new furthest point, and by repeating this process throughout the
entire path, the AUV is able to follow a trajectory to a desired final position.

5



Stanford Robosub 6

Figure 1.8: Inverse quadratic approxima-
tion

The controller gets a desired position from the motion plan-
ner and is responsible for sending commands to the thrusters
to reach the desired position. The node takes an input of
a desired state and the AUV’s current position and veloc-
ity, runs 6 PID loops (one for each DoF), and generates a
trajectory of 6-dimensional wrench vectors:

[fx, fy, fz, τx, τy, τz].

Each wrench is then allocated as forces to the eight thrusters
using an allocation matrix, informed by the physical locations
of the thrusters.
BlueRobotics publishes data of its T200 thruster’s perfor-
mance: f(battery voltage,PWM) = thrust (Kg-f), where f is roughly quadratic. Since we want to
find PWM given battery voltage and desired thrust, we fit a stepwise inverse quadratic function to the
experimental data (Figure 1.8). This PWM value is used to adjust motor thrust.

Figure 1.9: Rosnodes diagram of the controller

1.2.4 Testing Strategy
To refine and improve our existing capabilities, we conducted weekly pool tests, each addressing a specific
aspect of our design. Our strategy included both in-water and simulation testing to thoroughly validate
our system. This methodical testing process allowed us to systematically address and resolve potential
issues, ensuring each component functioned optimally within the integrated system.
For water infiltration testing, we conducted initial proof tests by pulling a vacuum and reducing pressure
to -27 psi, equivalent to a 19m depth, and then submerged the sub at 10 ft, confirming no water infiltration.
Before each test, we reduced pressure by 15 psi to ensure proper electronics cooling. These tests were
repeated every time a significant addition was made to the AUV.
Electrical subsystems were extensively tested under peak power draw to evaluate thermal management,
transient responses to sudden load changes, prolonged operational demands, and other potential failure
modes, both in the lab and underwater. We invested significant effort in optimizing our communication
protocol between the Orin and the microcontroller to ensure low-latency thrust allocation. Additionally,
we conducted long-duration tests of our tethered communications to the subsystem to ensure stable and
reliable data transfer. We also performed rigorous edge-case testing of our kill switch under varying
thermal and electrical loads to guarantee safety and reliability across diverse environments.
In simulation, we used the ROS2 Gazebo simulator to test the Mission and Task Planners, the Extended
Kalman Filter (EKF), tune PID controllers, and verify waypoint routes before deployment. Additionally,
we implemented joystick control to replace the motion planner for control stack verification. For in-water
testing, we conducted bench and in-water tests for sensors and control systems according to detailed
plans, followed by iterative system integration tests to ensure subsystem integration and robustness.

6



Appendix A: Components

7



References

• Handbook of Marine Craft Hydrodynamics and Motion Control link

• Guidance and Control of Ocean Vehicles link

• Kalman Filter + State Estimation link

• ROS2 EKF Package link

• Printed Circuits Handbook, 7th Edition link

8

https://github.com/cybergalactic/FossenHandbook
https://github.com/cybergalactic/FossenHandbook
http://mocha-java.uccs.edu/ECE5550/index.html
https://github.com/cra-ros-pkg/robot_localization
https://www.amazon.com/Printed-Circuits-Handbook-Seventh-Coombs/dp/0071833951

	Abstract
	Acknowledgements
	Competition Strategy
	Design Strategy
	Mechanical Design
	Electrical Design
	Software Design
	Testing Strategy


