
URI Hydrobotics 1

URI Hydrobotics: RoboSub 2024 Technical Report
Benjamin Annicelli, Cameron Tum, Naomi Gitelman, Devin Hunsberger, Elias Newall-Vuillemot,

Gabriel Arabik, Willson El Hage, Julian Tamayo, Sam Rebuck, Aidan Donnellan, Sean Cooper, Simcha
Schnee, Jose Mercado, Evan Asci, Nathan Agir

I. Abstract

The primary objective of our team this year
is to get a robot to compete that is able to
achieve all vision based tasks. We achieved
this by using very simple steps for our
competition strategy complemented to our
design of the submersible itself. We
designed our submersible with the mindset
of a simple yet effective design with a focus
on ease of maintenance for any pitfalls we
might come across. We also conducted
several individual tests in order to ensure an
effective design for each component of the
robot allowing us to detect any deficiencies
in our components. This allowed for an easy
final assembly and confidence in our final
design.

II. Technical Content
A. Competition Strategy

Our primary strategy for the competition this
year is focused on movement based tasks, as
this is the first year we’ve been to RoboSub
since 2007. The tasks we plan to do include;
Rough Seas, Enter the Pacific,
Hydrothermal Vent, and surfacing within the
octagon. For these tasks to be done
successfully we will be using our
arrangement of sensors such as a 9 DOF
IMU, and our 2 onboard cameras. (We are
planning to add a front-facing Ping 1 Sonar
from BlueRobotics but this is still WIP). We
will utilize odometry with our IMU for

tracking our movement to each task as well
as circumnavigating the buoy and passing
through the gate. As for locating tasks, we
will make use of our front mounted camera
for locating the gate, buoy, and sample table
below the octagon. Our top camera will be
used in looking for the octagon and making
sure we surface within its borders. And for
watching the side of the gate we pass
through for determining our
circumnavigation of the buoy.

Each task, and navigation is defined within a
state for our state machine. Task states can
be labeled as complete, locking them from
being re-accessed in the case of being
located by our cameras. The different states
include; Start: the Tardigrade dives and
locates the gate, RoSearch: does a general
search of all currently viable tasks or
directional tools using our front camera by
rotating, ScanSearch: does a scanning
movement across the pool floor looking for
tasks and/or directional tools, Gate:
Tardigrade passes through the gate utilizing
our front camera for object detection, and
our top camera for determining the side in
which is passed through, Buoy: based off the
side of gate, rotate the corresponding
direction of the buoy, utilizing our front
camera for navigation and our IMU/top
camera for circumnavigation of the buoy,
Surface: Tardigrade utilizes any directional
tools and the front camera for navigating to



URI Hydrobotics 2

the Samples table, then using the top
camera, surface within the octagon.

At this time the Tardigrade is not equipped
with any grabbers, echo sounders, or torpedo
launchers to complete the other tasks.

B. Technical Design
1. Mechanical

Our approach to the robot leverages
standardization, modularity, and smart use
of stock components towards making a
simple and effective design. The backbone
of Tardigrade is a T-slot aluminum frame
and .25” HDPE side panels. It is to these
parts that all the other structural elements
are attached by either dovetail nuts to the
aluminum or bolted to the HDPE. Parts that
are flat such as the top and bottom panels,
the bottle brackets, mounting plates for the
thrusters, etc. are laser cut from acrylic or
delrin. Those that can’t be are resin printed
such as the exterior fairings. As to
propulsion, Tardigade sports 6 Blue
Robotics T200 thrusters: three vertical heave
thrusters, two rear surge thrusters, and one
forward yaw thruster. For vision, there are
two cameras: a 180-degree FOV upward
facing camera and a 150 degree FOV main
forward camera. Care has been taken to
make the exterior of Tardigrade aesthetically
pleasing and easy to model, every exterior
screw is countersunk and the forward profile
is a semicircle. Most of the interior of the
robot is occupied by three bottles that house
the batteries and computer components. The
bottles, flanges, and cable penetrators are all
stock from blue robotics but laser cut acrylic
caps with different penetrator layouts have
been made to suit our needs. Last but

perhaps most vital is cut to form R-3312
buoyancy foam giving our robot flotation.

(Bottle mounting system with computer
bottle in center and battery bottles to the

sides rendering)

(Full AUV assembly)

2. Electrical

We utilize two Blue Robotics batteries, each
providing 14.8 volts with a current draw of
60 amps and a maximum burst current draw
of 132 amps. These batteries are connected



URI Hydrobotics 3

to a main power wire, which then splits into
two separate wires, each linked to individual
diodes on a custom-printed PCB board.
From the PCB board, our kill switch is
connected to a connected power distribution
board that distributes power to the thrusters.
This setup ensures that pulling the kill
switch removes power from the thrusters
while leaving the rest of the system
operational.

(Computer bottle rendering)

Additionally, two DC-DC converters are
separately connected to the diode board,
providing power to our Raspberry Pi 4B and
NVIDIA Jetson Nano without risk of
damage. The Raspberry Pi 4B acts as the
system's central processor, sending
commands to and interpreting data from all
onboard devices. It powers and
communicates with a Raspberry Pi Pico,
enabling thruster control via Blue Robotics
bidirectional ESCs (electronic speed
controllers) for our Blue Robotics T200

Thrusters. The NVIDIA Jetson Nano, also
connected to the Raspberry Pi 4B, transmits
information from our front and top cameras.
Lastly, an Adafruit 9-DOF Absolute
Orientation IMU is attached to the
Raspberry Pi 4B for localization and
odometry purposes.

3. Software

Sure, I can refine and check the technical
accuracy of your statements. Here's the
revised version:

The core processing unit of our robot is a
Raspberry Pi 4B, accessed remotely over a
Secure Shell Protocol (SSH) connection via
a predefined router. The Surface laptop
connects to the router via Ethernet for stable
communication. We are using Ubuntu 20.04
Server on the Pi for a headless, lightweight
operating system, with ROS-1 Noetic
Ninjemys as our primary Robot Operating
System (ROS) library, due to ROS-MVP's
ongoing ROS 2 development.



URI Hydrobotics 4

The Raspberry Pi Pico functions as a
microcontroller for our thrusters,
communicating through byte strings over a
serial UART interface via USB to the Pi.
These byte strings are unpacked, parsed, and
used to generate PWM signals for each
thruster via a continuously running thread
loop.

For object detection, we employ two
YOLOv8 models—one for the front camera
and one for the top camera. Our datasets are
annotated and labeled on RoboFlow to
handle the large volume of data efficiently.
Currently, we are training for five classes:
Gate, Buoy, SamplesTable, Path, and
Octagon. The models are trained locally on
our systems. Our preprocessing techniques
include random removal, random Gaussian
blurring, and random rotations. The dataset
is split into a 70-30 train-test ratio. The
models are hosted on an NVIDIA Jetson
Nano, which communicates with the Pi over
Ethernet through SSH, providing class
predictions, confidence scores, and (x, y)
coordinates. This communication is
facilitated by ROS' multi-machine package,
with the Pi acting as the master and the
Jetson Nano as the slave.

For maritime navigation and localization, we
utilize a combination of an Extended
Kalman Filter (EKF) and the Madgwick
Filter. The EKF smooths observed and
estimated positions to provide a more
accurate dead reckoning trajectory. The
Madgwick Filter assists in determining
orientation using data from a BNO085 IMU
and Magnetometer, offering
close-to-accurate measurements of position

and pose in the absence of Sonar, DVL, or
depth sensors.

(Pi to Pico Diagram)

C. Testing Strategy

At this time, most of our testing takes place
in the Stonefish Simulator, specifically the
Marine Vehicle Package (MVP) wrapper for
Stonefish. In Stonefish we have taken the
time to make an accurate environment of the
Woollett Aquatics Center main pool, such as
its length, width, depth, as well as water
clarity. Stonefish makes use of your own
ROS environment for “realistic” data
acquisition such as positional, video, sonar,
and accurate hydrodynamic physics.
Stonefish makes use of OpenGL and Qt for
the front-end, and the Bullet Real-Time
Physics Engine for back-end processes.

We also have access to the URI Bay
Campus’ testing pool. (pictured below with



URI Hydrobotics 5

the URI SOSLab’s AlphaAUV).

Stonefish-MVP makes usage of your current
ROS environment so basically any code
written works directly within the simulation
environment. For example; you can add
noise to sonars if you wish to accurately
represent the actual on-board sonar. This is
all taken care of using MVP and Stonefish's
extensive middle-ware.
III. Acknowledgements

We would like to thank our main sponsor
Cadence for their irreplaceable industry
standard training on PCB design.

We would like to thank NIUVT for their
funding which allowed us to travel to the
2024 RoboSub and acquire electrical
hardware.

We would like to thank the College of
Engineering for their funding which allowed
us to travel to the 2024 RoboSub
competition.

We would finally like to thank the College
of Ocean Engineering for their funding
which allowed us to acquire hardware to
build our AUV.

IV. References
● E. C. Gezer, M. Zhou, L. Zhao and W.

McConnell, "Working toward the
development of a generic marine vehicle
framework: ROS-MVP," OCEANS 2022,
Hampton Roads, Hampton Roads, VA,
USA, 2022, pp. 1-5 .

● P. Cieślak, "Stonefish: An Advanced
Open-Source Simulation Tool Designed for
Marine Robotics, With a ROS Interface,"
OCEANS 2019 - Marseille, Marseille,
France, 2019, pp. 1-6


