
Michigan Robotic Submarine: Strategy, Design, and
Implementation of Wettstein

Nolan Kuza, Muhammad Bahru Sholahuddin, Diego Montemayor, Kathryn Wakevainen
Kobi Wettstein, Adarsh Ponaka, Elaina Mann, Melissa Peters, Arnav Mummineni, Jennifer Chin,

Alexander Bowler, Tong Sing Wu, Shrey Sahgal, Emi Yuki, Shubh Agrawal, Andrew Huston

Abstract—Michigan Robotic Submarine is an undergraduate
student project team at the University of Michigan in its fourth
year participating in the RoboSub competition. We developed our
autonomous underwater vehicle (AUV), Wettstein, shown in Fig.
1, to advance our capabilities to new tasks while also addressing
the limitations of our previous design. To improve the robustness
and maintainability of our system, we added thruster guards
and designed two new custom PCBs. We have also developed
a strong foundation for flexible software, which we leveraged
to create software best-suited for this year’s task, including a
streamlined pipeline for classical computer vision algorithms and
a refined task planning framework. Furthermore, we designed
two mechanisms to enable new proprioceptive capabilities.

I. COMPETITION STRATEGY

This year we focused on expanding to new tasks, and
adapting to the modified tasks, such as the change in the buoy
shape. Our recent enhancements to our system demonstrate
its strong foundation and its ability to continuously expand to
tackle this year’s and future years’ RoboSub challenges. Some
areas that we identified as strengths included our machine
learning pipeline, which we were able to quickly train and
utilize at the 2023 competition along with a robust task planner
to map out the failure cases and fallback states for each task. In
turn, we chose to focus on developing our classical computer
vision pipeline and designing additional mechanisms. We
also designed and manufactured a thinner lid to the hull of
Wettstein to reduce the weight which will earn us more bonus
points.

A. Target Tasks

Our target tasks for the 2024 RoboSub competition are the
coin flip, gate, buoy, and bin tasks.

1) Rough Seas—Coin Flip: To complete the coin flip task,
our design requires the robot to be sensing its environ-
ment before starting the run so that it can record the
angle that the gate is present at. This provides a reliable
method for identifying the initial angle needed to turn
to face the gate, regardless of the result of the coin flip.

2) Enter the Pacific—Gate: To pass through the gate, we
use a machine learning model to detect the image on
the gate and center on it. We decided to always choose
the same image to center on, as this allows us to
focus on optimizing the model’s performance for that
specific image. Additionally, this makes it so that we
can complete the buoy and the bin tasks in the same way
every run to maximize points (namely, the direction to

Fig. 1. CAD of our 2023-2024 AUV, Wettstein.

circumnavigate the buoy and the color to target on the
bin), enabling more consistency throughout our runs.

3) Path: In order to reach the buoy and bins tasks, we in-
tend to use the path-marker, which requires an additional
camera on the bottom of the submarine . Since we use
classical computer vision algorithms for our relatively
low-resolution bottom camera, this sub-system draws
a reasonably low amount of computing power. Should
this system fail, we can use a hard-coded “fallback”
orientation, making the system sufficiently reliable to
be worth its associated complexity.

4) Hydrothermal Vent—Buoy: We also aim to achieve max-
imum points on the buoy task by identifying, approach-
ing, and properly circumnavigating the buoy. To identify
the buoy, we utilized the large horizontal field of view
(110°) of our front-facing stereo camera along with a
computer vision algorithm to detect the buoy based on its
shape and color. We decided to use a classical computer
vision algorithm rather than machine learning for this
task since classical algorithms excel at detecting simple
colors and shapes, and do not require the extensive data
and training that machine learning does. To circumnavi-
gate, we stop approaching the buoy once it has a certain
radius within the camera’s image, and then move in a
diamond shape around the buoy. We achieve consistency
by choosing a large path of movement around the buoy,
increasing the chance that we will circumnavigate the
buoy without touching it. This simplicity allows us to
complete this task for maximum points without having
to tune complex movement parameters.

5) Ocean Temperatures—Bins: We intend to complete the

Michigan Robotic Submarine 2

bins task for the first time, maximizing points by drop-
ping two markers into the side of the bin coordinated
with the buoy and gate tasks. For this task we designed
a dropper mechanism with simplicity in mind which
resulted in consistent and reliable dropping of a single
marker. As such, there is a dropper mechanism mounted
on either side of Wettstein to improve the symmetry
for hydrodynamic forces and point-scoring potential.
Similarly to the buoy task, we chose to use classical
computer vision rather than machine learning to detect
the bin due to its simple shape and color. To center
on the bin, we alternate descending and re-centering
on the bin, switching between the two based on the
visual distance to the center of the bin in the image from
the bottom camera. We do these movements separately
rather than simultaneously to reduce the potential of
roll/pitch movements causing the camera to lose sight
of the bin.

6) Collect Samples—Octagon: We identified the Octagon
as a stretch goal for this competition. We designed a
gripper mechanism intended to pick up the assorted
samples. However, our system does not currently have
acoustic navigation capabilities so we would not be
able to reliably locate the task. We determined that
this uncertainty made it a low priority for software
development and testing compared to the other tasks.

II. DESIGN CREATIVITY

A. Mechanical

Fig. 2. CAD of top-view of Wettstein.

1) Hull: Our hull is machined from 6061 aluminum with
half inch walls to allow for long term reusability. It is a
component we recovered from our previous AUV to reduce the
cost of manufacturing and its modularity characteristics enable
easy modifications. It has three windows, two for a front
camera and bottom camera and one that provides visibility to
the electrical systems for quick troubleshooting. A double o-
ring face seal was used at each port to create a redundant seal
that ensures a reliable leak proof sub. A lid is mounted to the
hull via hinges and secured in place using latches when the sub
is underwater. This hinge and latch system makes accessing
electronics a quick and simple process. The submarine also

Fig. 3. CAD of our grabber.

contains an eight-thruster configuration, allowing it to move
in all six degrees of freedom.

Besides this base hull component, our AUV was completely
refurbished and redesigned for strength and modularity. With
additional components this year, including a grabber and a
dropper mechanism, we had to modify the frame around
our hull to allow for the mounting of these components
while also keeping the vehicle light enough to be at least
slightly positively buoyant. We machined and installed a new
bottom plate with a plethora of holes and slots to allow us
to shift components and ballast weights as we test for weight
distribution purposes and prevent unnecessary redesigns. This
bottom plate also served the purpose of protecting the sub’s
vertical thrusters from impacts.

In addition to redesigning the AUV’s bottom plate, we also
machined new mounts for its angled thrusters. These mounts
contained thruster shrouds to protect the angled thrusters from
wall collisions. The addition of these shrouds, as well as a
new bottom plate, increased the weight of the sub. To account
for this additional weight, we redesigned the lid of our hull,
primarily reducing its thickness, and by extension, its weight.
This redesign allowed us to discard a significant portion of
buoyancy foam mounted to the top of the vehicle.

2) Grabber: To pick up and move samples, we imple-
mented a claw mechanism (Fig 3). Our design features servo-
actuated claw arms linked through a set of gears, which spin
in opposite directions. When the gears spin in one direction,
the claws move farther apart until a large enough gap between
them opens for them to grab a sample. And when the gears
spin in the other direction, the arms move closer together until
they firmly clamp onto the sample. The arms were SLA 3D
printed due to their complicated geometries. They are stiff
enough to pick things up and hold them, while still remaining
weaker than the rest of the mechanism so that they break first
in case of a collision as they are much easier to make and less
expensive to replace.

3) Dropper: This year, we also implemented a marker
dropper subsystem (Fig 4). Rather than employing one dropper
containing two markers, we incorporated two identical drop-
pers, with one marker in each to improve the reliability by
eliminating the possibility that two markers would uninten-
tionally be dropped simultaneously. Each dropper consists of
a 3D printed tubular component in which the marker is stored.

2

Michigan Robotic Submarine 3

Fig. 4. CAD of our dropper.

To hold the marker in place before an intended drop, a bent
sheet metal arm partially blocks the bottom opening of the
tube. To release the marker, a servo connected to this arm
is actuated, uncovering the bottom opening of the tube and
allowing the marker to fall. 3D-printing large components of
the marker droppers was a quick and easy way to produce the
complex shapes incorporated into the design.

B. Electrical

1) Hall Effect Sensors: To control the behavior of the AUV
while disconnected from its tether, we used two latching hall
effect sensors. These can be triggered with magnets to control
the starting, stopping, and resetting of our sensors (in partic-
ular, the IMU) without needing a connection to a computer.
The ability to quickly control the state of our sensors externally
improves the efficiency of our testing setup time. Once a state
is activated, an indicator LED is lit for visual verification. This
year, we designed a custom PCB and 3D printed mount for
our hall effect system. Previously, the hall effect sensors faced
frequent disconnections due to loose wires. Additionally, the
many wires needed for the hall effect system contributed to
overcrowding of the electrical system. The hall effect PCB and
mount remedied this issue by quartering the number of wires
strengthening the connectedness of our hall effect system.

2) Motor Control Board: We identified the motor control
electrical subsystem as a top priority due to its critical func-
tionality, frequency of maintenance, and large space overhead.
Previously, each of our eight thrusters had 3 long wires routing
across the bottom of the AUV’s hull. These 24 wires would
connect to eight electronic speed controllers (ESCs) and then
output to eight PWM signals which are controlled by the flight
controller. In practice, this setup made the subsystem difficult
to organize and maintain. For instance, the process to change
an ESC was lengthy and prone to breaking other components.

As a result, we chose to encapsulate all of these wires and
components into a custom printed circuit board (Fig. 5). We
now have two sets of Motor-ESC boards (one on each side
of the robot), where each set takes input from 4 thrusters
and outputs 4 PWM signals. The ESCs mount directly to the
PCB with screw-block terminals, so we can easily unscrew
and swap them out. The thruster motors and PWM output

connect to the PCB using Molex connectors which provide
strong connections and can be disconnected easily if needed.
This makes swapping out ESCs easier when necessary and
frees space inside the AUV for other components.

Fig. 5. Motor control board PCB design

An important consideration was the current limit for this
PCB. The first iteration of this board was operational but
failed during prolonged water testing due to insufficient current
rating and heat dissipation. The issue was that each ESC could
theoretically draw up to 30A which meant the board’s traces
had to support this requirement. Increasing the trace width to
support 30A wasn’t a good use of space, so we decided to
increase the copper weight of each trace, essentially making
them “taller.” Additionally, we used techniques like dissipating
heat with thermal vias and large power and ground planes to
fully allow our motor control board to work with multiple
ESCs and motors for the second iteration of the board which
is currently in use.

3) Voltage Regulation: We continue to use our custom
power distribution PCB, which utilizes an off-the-shelf Pololu
5V 15A Step Down Regulator as our DC-DC converter to
supply up to 75 W to most of our electrical system compo-
nents. We utilize a separate OTS DC-DC converter to supply
the Jetson Xavier NX with 13V.

C. Software

Our software stack utilizes the Robot Operating System
(ROS) to distribute our logic into distinct modules called
nodes. These nodes are organized into packages based on their
role in the AUV’s operation. Fig. 6 shows these packages, with
arrows representing flow of information between packages.
The majority of our code is written in Python, with the
exception of the hardware abstraction layer, which is written
in C.

1) Computing Architecture: Our computing architecture
features a distributed layout to enable high flexibility. Most
of our computing is carried out on our Jetson Xavier NX.
This is the most powerful computer in the system, so it is
responsible for running our computer vision and machine

3

Michigan Robotic Submarine 4

Fig. 6. High-level Software Architecture

learning algorithms, as well as our high level planning, local-
ization, and control modules. Our motor control is handled by
a PX4 PixHawk flight controller, which requires a Raspberry
Pi 3B+ to interface with. We designed our system so that
the Raspberry Pi is solely responsible for interfacing with the
flight controller; this allows the rest of our code to run on the
Jetson, utilizing its superior capabilities. For interfacing with
our low-power devices – namely our depth sensor, hall effect
sensors, and indicator lights – we use an Arduino, which the
Jetson communicates with via rosserial.

2) Orientation Sensing: To sense our orientation, we use
the flight controller’s internal IMU (inertial measurement unit).
Last year, we observed that sometimes our orientation readings
would drift significantly. This year, we performed extensive
diagnostics on this problem, and found that this was caused by
the flight controller attempting to fuse magnetometer readings
with the IMU. Due to a large amount of magnetic interference
in the system, these readings were drifting. We resolved this
by disabling the magnetometer, resulting in more consistent
orientation measurements.

3) Computer Vision: In order to detect the pathmarker,
buoy, and bins, we utilize classical computer vision (CV)
techniques with the OpenCV library. These objects are single-
colored with fewer features, making them highly noticeable
with HSV thresholding. The HSV (Hue, Saturation, Value)
color model simplifies the process of detecting these objects,
as it aligns more closely with human perception of color
and allows for more intuitive color-based segmentation [1].
Additionally, CV techniques are computationally cheaper com-
pared to ML models, making them more suitable for real-time
applications on our autonomous vehicle.

Our HSV filter pipeline has been streamlined to handle
multiple tasks, including path marker, buoy, and bin detection.
The approach involves several key steps to enhance and
process the underwater images. First, we adjust the white
balance of the image to counteract the color distortion caused
by underwater conditions. This process shifts and scales the
color channels to balance the overall image color, making
the objects more distinguishable. Following this, we perform
histogram equalization on the RGB channels of the image to

enhance the global contrast, ensuring that the details of the
objects stand out more prominently (Fig. 7). The enhanced
image is then converted from the RGB color space to the
HSV color space. To reduce noise and smooth the image,
we apply median and Gaussian filters. Next, we apply color
thresholding to the HSV image to create a binary mask that
isolates the object’s colors, in which the objects are highlighted
against the background. The binary mask is further refined
using morphological operations such as erosion and dilation
to mitigate noise and fill gaps.

Fig. 7. Example of a pathmarker image before (left) and after (right) image
enhancement.

Using the binary mask, we detect contours in the image,
representing the boundaries of the objects. We analyze these
contours by their size and features uniqueness to identify the
desired objects. If a valid contour is found, we then process
them based on the specific tasks: either path marker, buoy, or
bin. For the path marker, we use the minimum area rectangle
method (bounding box) to approximate the path marker’s
boundary. We then identify the corners of this rectangle and
calculate the center points of the edges. The centers of the
edges and the center of the rectangle are calculated, and we
use these points to determine the yaw angle of the path marker
relative to the camera’s heading. By drawing lines between
the corners and calculating the angles, we can determine the
orientation of the path marker. This provided a significant im-
provement over our pathmarker detection from last year, which
naively searched for lines without considering the shape of
the object. For buoy detection, we employ a similar approach
but focus on circular objects. The algorithm calculates the
center and radius of the detected buoy to determine its position
and size. For bin detection, the process is analogous to path
marker detection; Fig. 8 shows an example of detecting the
key features on the object. See Appendix A for full examples
of this pipeline operating on each object type.

One notable challenge we faced was the effects of our
camera’s automatic white balance adjustments. Automatic
white balance adjustments can introduce variability in the
color representation of objects, affecting the accuracy of HSV
filtering. This variability can lead to inconsistent detection
results, as the colors of the objects may appear differently
under varying lighting conditions. To mitigate this issue, we
prefer manual white balance settings to maintain consistent
color representation and enhance the reliability of our CV

4

Michigan Robotic Submarine 5

Fig. 8. Example of detecting key features on a bin-shaped object.

pipeline.
4) Machine Learning: To detect the images on the gate,

we continue to use the machine learning pipeline that we
developed last year. We use the YOLOv5 neural network [2]
for object detection, which we fine-tuned to detect gate images.
Our model runs within the PyTorch framework, an open source
machine learning framework that is an industry standard for
this type of work [3].

Last year, we streamlined our process of labeling data and
training models by developing a series of scripts to automate
the setup of training on the Great Lakes Computing Cluster
and removing the need to generate the image labels for each
training run. We created a data pre-processing script that
ensures all of the images were of the correct resolution,
file type, and naming convention. We would then import the
images to LabelBox and draw bounding boxes. A second
script then generates the label files and splits them into the
required train and test designations. To understand how well
newly trained models perform on a test set, we utilized a
model evaluation script, provided by the Ultralytics YOLO
package. These evaluation metrics allow us to easily compare
the performance of two models. We found at last year’s
competition that this allowed us to efficiently train our model
using only data we collected at the venue. Thus, we continue
to leverage this pipeline, and we plan to train the model to
detect the gate using images we will collect at competition.

5) Task Planner: The task planner is code for coordinating
system components to complete tasks during a run. Last year,
we rewrote our planning framework to allow rapid changes
to the task planning logic while at competition. Namely, this
system allows us to easily modify the transitions between
different behavior states without modifying the states itself.

At competition last year, we ran into several issues in
our task planning code that could have been prevented by
increased static code analysis, including mistyped variable
names and unexpected type errors. We were unable to run
static analysis on our code because of the highly dynamic code
in the state machine. This year we enhanced the framework
by making the state machine implementation type safe and
requiring code written with the state machine to be type safe.
We check the type safety with mypy, a Python linter and type
checker. The additional type safety also lets our development
environment provide much more relevant and useful auto-
complete suggestions, increasing developer productivity.

An additional benefit of the state machine refactors is that
we were able to add the ability to automatically create a
visualization of the state machine. These visualizations convert
the state machine transition maps into a flow visualization
graph, which allows us to visually verify the logic flow in the
code is equivalent to the logic flow we intended. Appendix
B includes an example of such a graph generated from our
complete state machine.

III. TESTING AND EXPERIMENTAL RESULTS

A. Teleoperation Framework

A key takeaway from competing in-person last year was
the need for an efficient water testing infrastructure. Due to
the interdependence of our subsystems, it is challenging to
test individual components of our system while the AUV is
operating autonomously; it is often difficult to diagnose the
source of errors when the entire system is running.

Last year, we developed a robust teleoperation (teleop)
framework that allows a human driver to manually control
various aspects of the AUV while other subsystems run
autonomously, enabling us to quickly and efficiently execute
unit tests and debug components in isolation. Our framework
makes significant improvements compared to the default man-
ual control system provided by ArduSub on our Pixhawk flight
controller, including faster switching between autonomous /
teleoperated modes, ability to alter the control mode of each
degree of freedom separately, and more reliable emergency
stopping. We found that this greatly expedited our testing
process during last year’s competition, and thus we continued
to develop and utilize this framework.

B. In-Water Testing

From past competitions we have learned that in-water
testing is invaluable and allows for both the software and
hardware teams to validate their designs. It also provides
a great opportunity for training new members and boosts
morale. For these reasons our team has attempted to utilize
our Universities resources to perform as many water tests as
possible.

We used a water tank in the Ford Motor Company Robotics
Building (FMCRB) at the University of Michigan to perform
unit tests and sensor, motor, and camera calibrations. We
performed control parameter tuning and movement testing at
the U-M Marine Hydrodynamics Laboratory (MHL), along
with larger-scale tests that involved competition elements.

Before each in-water testing session, we wrote a test plan
which describes what specific tests are to be carried out and
explains the high-level purpose of each test. We recorded the
procedure for each task and the expected results, along with
some notes on potential problems or bugs. This allowed us to
streamline testing once we arrived on-site and allowed us to
create a log of tests we’ve previously performed and issues
we’ve previously encountered.

Throughout the fall, we performed significant enhancements
to the mechanical components and electronic system. In order
to validate the various changes we made, we performed several

5

Michigan Robotic Submarine 6

smaller unit-tests using the water tank at the FMCRB. Once
the system was stable during the spring, we were able to
perform many larger in-water tests at the MHL. These tests
included tuning and evaluating the computer vision pipeline,
profiling our movement, and attempting full competition tasks.
Also, when at the MHL, we would collect image data of the
various tasks so that we could test and tune our computer
vision algorithms offline. Over the course of the spring and
the summer, we typically performed between two and four
water tests per month.

As we incrementally added new components to the hull of
the AUV, we assessed how they affected the modified weight
distribution, movement, and PID tuning of the AUV using
several in-water unit tests. These included driving in a square
and driving forward, both at a set depth. The physical testing
also proved to be beneficial for incremental changes in our
submarine to improve the efficiency and reusability. These
changes were primarily driven by our number of collisions
while testing, the specific orientation and movement that each
collision had, as well as how well our submarine fared with
our wet mate connector. This led to a number of changes that
overall hardened our sub so that it could take hits without
breaking all the time – primarily by adding metal cases to
outer components, 3D printing other components so that they
break instead of more crucial components, and moving the
parts around with a more modular design.

C. Off-Board Testing

In order to write, execute, and test our software off of the
AUV, we developed a Docker image that emulates our main
computer. This workflow allows anyone on our team to quickly
set up our development environment on their computer. In
general, we tested the logic of our software off-board of
the AUV and reserved in-water testing for collecting data
to improve our vision system or test the physical results of
the algorithms once they had been tested in simulation. This
prevented valuable in-water testing time from being consumed
with simple software errors.

We also developed a Unity simulation that communicates
with our software emulation in Docker. We wrote Unity C#
software to simulate the movement, sensor data, and vision
data of the AUV with random statistical noise. The simulation
also enables us to evaluate our software’s behavioral logic
within a to-scale Transdec scene created by Team Inspiration
[4] (see Fig. 9).

To visualize the output of our software both in Docker
and on the real AUV, we created visualizations using RQt,
a ROS dashboard library. We leveraged RQt to graph data
and dynamically tune control parameters, allowing for easy
incremental testing.

ACKNOWLEDGEMENTS

The Michigan Robotic Submarine team would like to thank
our 2024 sponsors for their monetary support: Ford Motor
Company, University of Michigan Central Student Govern-
ment, the University of Michigan College of Engineering

Fig. 9. Testing the gate task logic using Docker and Unity.

along with the departments: Robotics, Computer Science and
Engineering, Electrical and Computer Engineering, and Me-
chanical Engineering. We’d also like to thank the individuals
who donated to our team during the University of Michigan’s
Giving Blue Day fundraiser.

In addition, we would like to thank our advisor Dr. Katie
Skinner for continuously supporting our team by advising us
and overseeing the Multidisciplinary Design Program which
allows members to earn class credit for their contributions to
our team.

We are greatly appreciative of the Marine Hydrodynamics
Lab staff, especially Jason Bundoff and Nicole Cheesman,
for graciously providing the team with an in-water testing
location.

We also would like to thank the Wilson Student Team
Project Center facilities and Ford Motor Company Robotics
Building staff, especially Alyssa Emigh and Chris Gordan, for
hosting our team workspace, providing tools and resources,
and supporting our endeavors.

We are also thankful of Mariah Moss and Katelyn Poore
from the Office of Student Affairs at the University of Michi-
gan College of Engineering for their guidance in developing
our team and assistance purchasing the materials that make
our work possible.

Lastly, we would like to thank the RoboNation team for
organizing the RoboSub competition. We are also thankful
for the hydrophone and image data provided through the
RoboNation data sharing program.

REFERENCES

[1] N. Fragoulis and D. Kastaniotis, “Why Embedded Software Devel-
opment Still Matters: Optimizing a Computer Vision Application on
the ARM Cortex A8.” 2013, publisher: Irida Labs. [Online]. Available:
http://rgdoi.net/10.13140/2.1.2670.6240

[2] G. Jocher, “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU
and OpenVINO Export and Inference”. Zenodo, Feb. 22, 2022. doi:
10.5281/zenodo.6222936.

[3] P. Adam et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”, in Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[4] Inspiration Robotics, “RoboSub-Simulation”. Github.com.
https://github.com/InspirationRobotics/RoboSub-Simulation (accessed
June 11, 2022)

6

Michigan Robotic Submarine 7

APPENDIX A
COMPUTER VISION PIPELINE RESULTS

7

Michigan Robotic Submarine 8

APPENDIX B
STATE MACHINE DIAGRAM

8

Michigan Robotic Submarine 9

APPENDIX C
COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if new) Year of Purchase
ASV Hull
Form/Platform

American Tooling &
Prototype

Custom 6061 Aluminum $3250.00 2022

Waterproof
Connectors

Blue Robotics WetLink Penetrators WLP-M10-6.5MM-
HC

$120.00 2024

Propulsion Blue Robotics T200 w/ Propellor 7-20V $1,074.00 2020
Power System N/A Custom N/A N/A N/A
Motor Controls Blue Robotics Basic ESC 7-26V $172.00 2023
CPU Nvidia Jetson Xavier NX 6-core Nvidia Carmel

ARM v8.2 @ 1.9
GHz, 16 Gb RAM

$400.00 2022

Compass PixHawk PX4 Accel/Gyro:
ICM-20689 with
Magnetometer

$189.99 2022

Inertial Measurement
Unit (IMU)

PixHawk PX4 MPU6000 9-axis 189.99 2022

Doppler Velocity Log
(DVL)

N/A N/A N/A N/A N/A

Camera(s) Stereolabs, Blue
Robotics

ZED2, Low-light HD
USB Camera

stereo vision,
pathmarker detection

$449.00, $99.00 2020, 2021

Hydrophones N/A N/A N/A N/A N/A
Localization and Map-
ping

N/A Custom N/A N/A N/A

Vision N/A YOLOv5, PyTorch,
OpenCV

train convolutional
neural network and
perform classical
computer vision

N/A 2023

Autonomy N/A Custom N/A N/A N/A
Open source software N/A Andy Ze ROS PID PID Control N/A N/A

9

