AquaPack Robotics at NC State 1

AquaPack Robotics Technical Design Report

Elizabeth Gillikin*, Abhiram Poosarla’, Julianna White*, John FetkovichT, Achyuta Kannan¥, Alex Ofsanik?,
Saranga Rajagopalan’, Ashton Henderlite', Alexandria Epley*, Spencer Mol*

*Mechanical and Aerospace Engineering, TElectrical and Computer Engineering,

INuclear Engineering,

Abstract—AquaPack Robotics at NC State University is return-
ing to RoboSub with SeaWolf VIII in 2025. Overall, AquaPack’s
goal in the 2024-2025 design cycle has been to utilize the stability
of the existing SeaWolf platform while incorporating new features
and making software improvements to adapt our approach to
updated competition tasks.

The lessons learned from the 2024 competition, as well as the
introduction of new competition tasks for 2025, led us to add
a Blue Robotics Ping360 Sonar to our vehicle and adjust our
approach to tasks such as Navigate the Channel, Tagging, and
Return Home. In addition, SeaWolf VIII’s torpedo launcher has
been entirely redesigned following concerns of power and ease-
of-reloading in 2024. SeaWolf VIII’s custom electrical system
and octagonal frame have remained stable to support additional
development of the acoustics and sensing systems. Overall,
SeaWolf VIII has proven to be a platform suitable for continuous
iteration, enabling the development of more complex subsystems.

I. COMPETITION STRATEGY

A. General strategy: reliability and refinement

Every year, AquaPack Robotics focuses on a reliability and
refinement strategy for the current competition vehicle. For the
past six years, that vehicle has been SeaWolf VIII. The team
recognizes that a constantly changing system is unreliable,
but a system that never changes is subject to repeated errors.
Identifying systems in acceptable condition and those in need
of improvement is necessary for continual progress to be made.

The 2024-2025 design cycle maintained that the electrical
and mechanical systems of SeaWolf VIII were highly reliable.
Continuous maintenance of these systems was prioritized
over major alterations. We do not imply perfect electrical
or mechanical systems, but these systems have proved to
be a reliable platform off of which software and subsystem
improvements can be made. Specific details on the current
electrical and mechanical system are discussed in Sections [[I-B]
and [[I-A] respectively.

The software system and strategy demanded significant
improvements. The chosen methods for software, discussed in
Sections [[I-D]and [[I-G| proved challenging to develop with the
introduction of Task 2 - Navigating the Channel. To address
this new task and supplement the completion of familiar tasks,
an active sonar was added to SeaWolf VIIL

B. Heading Out

Before the start of the competition run, a coin flip is re-
quested, which determines the starting orientation of SeaWolf
VIII. Using computer vision (CV) and image recognition with
our front-facing camera, SeaWolf VIII will locate the position
of the gate.

Industrial and Systems Engineering,

Computer Science

Fig. 1: SeaWolf VIII

C. Collecting Data

The competition run starts with successful navigation
through the gate. Our custom-built flight controller enables
six degrees of freedom locomotion, which makes navigating
in a straight line through the gate and then performing a
style rotation of yaw 720° achievable. Computer vision (CV)
and image recognition with our front-facing camera allow
us to align with the gate after a random starting orientation
following the coin flip task. CV further enables us to navigate
through our desired side of the gate. This task takes the
greatest priority as navigating through the gate is required to
qualify.

D. Navigate the Channel

After successfully qualifying through the gate, SeaWolf VIII
interacts with the slalom. Utilizing our active sonar, SeaWolf
VIII will detect the position of the pipes and move through
each set while staying within the region without colliding with
any of the PVC pipes.

E. Drop a BRUVS

The downward-facing camera on SeaWolf VIII detects the
Path facing the bins. Collected images inform locomotion to
center on the side of the bin corresponding to the correct
destination. The downward-facing camera then detects the bin
and drops a marker toward the open bin. This task takes
priority in our strategy over torpedoes due to the reliability
of our dropper system and simpler navigation that requires
only the downward-facing camera.



F. Tagging

Navigating to the torpedo task requires passive sonar.
Acoustics’ passive sonar uses a Bartlett beamformer and cus-
tom register transfer language (RTL) to estimate an acoustic
ping’s angle of arrival (AoA). When close enough to the target
to detect, CV data takes priority for navigation and informs
robot locomotion. When map detection confidence is high,
SeaWolf VIII fires one of its torpedoes at the general target.
Due to the difficulty in navigation, reliability of operating the
launchers, and accuracy of CV to align with targets, this task
is of lower priority during a competition run.

G. Collect Samples

Once SeaWolf VIII completes all other tasks, it uses the
passive sonar system to locate the octagon’s pinger and the
downward-facing camera to detect and align to the table in the
center of the octagon. Without a grabber manipulation system,
SeaWolf VIII’s only task is surfacing inside the octagon.

H. Return Home

SeaWolf VIII uses active sonar to locate the position of
the starting gate and re-submerge to retrace its movements.
SeaWolf will navigate back through the gate to end the
competition run.

II. DESIGN STRATEGY
A. Mechanical system

The design of SeaWolf VIII, seen in Fig. [I] places an
emphasis on control stability and modularity. The vehicle
layout was selected in a way that allows fixed thrusters to
achieve six degrees of freedom without relying on gimbals or
hydrodynamics. A repeating hole pattern on the modular alu-
minum frame supports continuous mounting and modification,
meeting physical needs at any time.

Fig. 2: Top view of SeaWolf VIII with numeric thruster labels.
To either side of the central hull are bays for peripheral testing
and mounting.

1) Control stability and design shape: The octagonal shape
of SeaWolf VIII achieves control stability. Thrusters are farther
from the center of mass, increasing their lever arm to counter-
act SeaWolf VIII’s comparatively high mass moment of inertia.
The shape, depicted in Fig. 2] has thrusters 1-4 placed in a
strafe configuration. These thrusters are at 45° angles relative
to the center of Sea Wolf VIII, enabling the four thrusters to
all contribute to horizontal motion in any direction.
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2) Modularity: A standardized hole pattern on SeaWolf
VIII’s frame and large bays on either side of the hull support a
wide range of possible configurations. The standardized hole
pattern allows for easy mounting of any peripheral component
nearly anywhere on the robot without frame modification.
Peripheral designs conform to the hole pattern depending on
the required mounting location. The large bays on either side
of the electronics hull are accessible through hinged panels,
providing ample space for any new subsystem during a testing
phase or final deployment. This space is also visible on either
side of the central hull in Fig. 2]

B. Electrical system

1) Main Electronics
Board: The Main
Electronics Board (MEB),
as seen in Fig. [3 is
the central interface for

the communications,
power, and sensor systems
on SeaWolf VIII. It

connects directly with the
Jetson Nano via a UART
connection, and with all
other electrical system

Fig. 3: Render of Main Elec-
boards via a unified 12C tronics Board. Generated with

bus. Thus, MEB acts as a KiCad.

buffer between the on-board computer and the rest of the
robot. This organization enables SeaWolf VIII to effectively
manage various sensors and boards situated throughout
the main hull of the AUV without putting additional
computational load on the on-board computer.

2) Power System: Safety and stability are the guiding
principles of the SeaWolf VIII electrical architecture (see Fig.
[[1] in Appendix A). This starts at our power source; The
robot is powered by two 4S Lithium-polymer (LiPo) batteries,
each fused at 40A. If a short circuit develops in the system,
the current will spike and destroy at least one of the fuses,
mitigating potential damage. This configuration balances the
need for safety with the power needs of the robot, as the
combined 80A provides enough overhead to allow power
stability and room for further expansion. To further ensure
safe operating conditions, the two external hulls holding the
batteries each contain a standalone leak sensor module to allow
early detection and notification of water leakage.

Immediately downstream of the batteries is a load balancing
circuit that leverages an ideal diode controller to safely connect
the batteries in parallel. It also provides reverse polarity
protection, which protects the electronics in the event a battery
is plugged in incorrectly.

After the load balancing circuit, power is provided to the
system using two Solid State Relays (SSRs) — the system SSR
and thruster SSR. The system SSR is responsible for switching
battery power to the entire system. When the vehicle is
powered on via an external switch, MEB is the first component
to receive power. MEB then drives system SSR to supply



power to other systems, including the Jetson Nano, acoustics
system, thruster SSR, and other peripherals. Thruster SSR is
enabled only if the vehicle’s computer generates a software
arm signal and the physical kill-switch is in the ‘“armed”
position. Importantly, the kill-switch is connected directly in
series with the software arm circuitry, ensuring that electrical
component failures cannot prevent the ability to kill the vehicle
with the hardware switch. Finally, various components on
SeaWolf VIII require power regulation. SeaWolf VIII uses
a power distribution architecture in which each board has
a dedicated regulator, which allows rapid development with
minimal disruption to the rest of the system. The system
provides several identical 5V buck regulators for use by the
acoustics system, auxiliary boards, USB hub and any future
additions that may require them. The active sonar accepts
a wide range of voltage inputs, but is powered by a 12V
buck-boost regulator to isolate the device from dips in battery
voltage. The Jetson Nano uses a more complex regulator
architecture due to its high current requirements and sensitivity
to voltage drops. First, power is regulated to 12V using a
SEPIC converter, which can maintain a steady output when
the input voltage suddenly drops. This is necessary because
the battery voltage occasionally sags due to thruster in-rush
current. The 12V is then regulated down to 5V using an
additional buck converter. This additional converter is required
to provide the lower voltage and higher current the Jetson
Nano requires.

C. Locomotion controls

Our custom control board handles vehicle locomotion. It is
a custom motion controller using an Arm Cortex M4F micro-
controller. It acts as a motion co-processor, allowing mission
code running on the vehicle’s computer to describe motion in
various high-level schemes. This co-processor design ensures
the computer spends minimal processing time on motion and
ensures control loop stability due to the deterministic nature
of timings on the control board.

The control board uses a Quaternion-based approach similar
to what can be used with a quadcopter [[1]. A Quaternion-based
approach allows numerically stable control of orientation in
3D space [2] without the potential for losing degrees of
freedom that accompany Euler angles [3]. Added to this
is a PID controller to maintain depth and tilt (pitch and
roll) compensation to allow the description of motion in a
partially world-relative 2D plane parallel to the surface. This
approach ensures that slight pitch or roll errors do not result
in unexpected motions.

This motion description also abstracts the vehicle’s nature to
mission code, allowing the code to be easily used on different
vehicles or in a simulator.

D. Software architecture

1) Action Tree and Technologies: The higher-level mission
code that interfaces with the MEB and control board to execute
tasks is written in Rust, using action trees. As depicted in
Fig. actions are defined at compile time in a tree from
the starting to the ending action, with various operations
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to reach the end state. Actions can be nested, chained, run
in parallel, conditionally execute branches, and modify the
execution of the action itself. Actions can perform more
functions than those listed, but we primarily use those listed.
We demonstrated the success of this architecture at RoboSub
2024 where we crafted and tuned missions which executed
reliably and with minimal failures.

Writing our action trees in Rust provides robust tooling
to optimize code, a borrow checker that prevents segmenta-
tion faults during runtime, and comparable runtime speeds
to C/C++. Action trees clearly define our actions and their
transitions at compile time, with the ability to show various
kinds of execution such as parallel, concurrent, and conditional
execution. We generate tree visualizations by converting the
tree structure into a Graphviz DOT file rendered as an SVG.
Fig. [] shows how this is rendered, with the ”AlwaysTrue”
conditional taking the place of a conditional action that may
change at runtime. These graphs are currently auto generated
with each build and published to our internal documentation
site.

Fig. 4: Example action tree which shows a race conditional
under the case of ”AlwaysTrue”.

2) Communication: A discrete communications manager
handles all communication with external systems. To prevent
system stalls from explosive thread growth, it is allocated to a
static number of threads to send and receive messages from the
control board. All serial messages generate an asynchronous
task that returns true when an acknowledgment is received,
allowing a wait for success. Specific messages are sent to
the control board to take specific actions. The control board
treats other messages as requests that return information about
the robot’s current state. For example, we can command the
robot to submerge to a certain depth and subsequently request
its depth. This interface is abstract enough that a change to
the control board would not require changes to the high-level
state machine. Currently, it allows for the same communication
between an actual system and simulation, with the actual sys-
tem communications routed through UART and the simulation
through TCP. The vision system runs a GStreamer connection
to share camera feeds. One pipeline offers an RTSP stream
for live footage during robot testing, while another records to
disk so real pool images can be used for vision model testing.
The vision processing code uses the last pipeline to move the
robot according to the targeted game object.

3) Building, deployment, and version control: Cargo is
Rust’s native build system, package manager, and unit testing



Fig. 5: Identification of gates in various simulated environ-
ments using ML

suite. It contains code to compile and interface with Nvidia
Compute Unified Device Architecture (CUDA) [4] code. Sea-
Wolf VIII's Nvidia Jetson Nano uses an ARM architecture
CPU and a specialized operating system, which complicates
compilation. To solve this, we developed a cross-compilation
tool that allows us to easily compile code for the Jetson
from any computer. We use a containerized development
environment to allow any member to quickly set up their
device and to ensure more reproducible builds.

All code changes are pushed to our central GitHub repos-
itory. We create branches for each new feature addition and
each pool test. We have made extensive use of continuous
integration to automatically build and unit test our code to
ensure the quality of the code we deploy to SeaWolf VIII.

E. Sensing

SeaWolf VIII's sensing
systems use both traditional T
and machine learning (ML) Vs S \
based computer vision as r's
well as a Blue Robotics J
Ping360 Sonar. Task com- \
plexity determines which /
approach we utilize for L
a given mission. We uti-
lized a traditional CV ap-
proach for tasks with sim-
ple polygonal shapes, an
ML approach for tasks with complex features, and sonar for
sensor fusion between these two where depth data is needed.
Detection of the Path with traditional CV is depicted in Fig.
[7] with the object identified and the direction of travel shown
by an arrow. Fig. 5] shows a ML identification of gates in
a simulated competition environment. Fig. [6] shows objects
identified from sonar data using HDBSCAN (Hierarchical
Density-Based Spatial Clustering of Applications with Noise)

clustering.
1) Traditional CV: Edge and line detection is the founda-

tional technique our traditional CV uses. Edge and line detec-

Fig. 6: Identification of objects
in sonar data via clustering
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Fig. 7: Comparison of Path-finding implementations: PCA in
Python (a), PCA in Rust (b), and minimum area rectangle (not
drawn) in Rust (c¢)

tion are image processing techniques that distinguish outlines
and line segments in an image. This design was referenced
from software developed for RoboSub 2022, as this method
worked well. We rewrote the algorithm for better integration
into SeaWolf VIII’s Java-based software architecture in ML-
2023. We again rewrote the algorithm in Rust [5]] to align
with our recent shift to the language. The adapted model, seen
in Fig. [/} reduced images to 4 RGB colors by combining
localized and global K-means to segment an image more
consistently. We obtained location and directional information
using Principal Component Analysis (PCA) with color and
size filters to determine each color’s mean and covariance.
After these numerous rewrites, the PCA based algorithm was
replaced with a simpler one based on contour detection and
minimum area rectangles. This algorithm is easily understood
and can be tuned with only two parameters: a color and area
range. Features that fall within the specified color and area
ranges are identified, then the feature with the greatest area is
selected. Next, a rectangle with the smallest possible area is
constructed around the feature, allowing us to extract a center
position and angle.

2) ML: For images with complex features, neural networks
were more suitable. They enable extracting distinct features in
complex images, such as torpedo targets. We used YOLOv5S
nano [6] as our model and developed a Unity simulator to
generate photorealistic images of tasks to train the model, as in
Fig.[5] The simulator can generate thousands of auto-labeled,
synthetic images in different environments. We developed the
ML model using Rust OpenCV [[8] and ONNX [9] formats. We
use CUDA kernels for pre and post-processing, which offloads
computation from the CPU to the GPU. This offload leads to
a speed-up in the overall vision pipeline since we are far from
full saturation of the CUDA cores on the Jetson Nano’s GPU.
The CPU is thus able to process more frames per second.

3) Sonar: Sonar is best suited for tasks where distance
data is required, vision systems perform poorly, or long range
detection is required. We first apply a filter based on an estab-



lished noise floor, then apply the HDBSCAN clustering
algorithm to extract objects from individual sonar data points
(See Fig. [6). Our sonar unit offers a sub-2 millimeter range
resolution, allowing us to determine the width of clusters with
very high accuracy. We can then interpret this data based on
the known measurements of the tasks and the current context.
We also vary the scan range and resolution to those best
suited for the task at hand. For close range navigation, we can
perform quick, high-resolution scans. For longer range scans,
we lower the resolution to maintain an acceptable speed.

F. Manipulations systems

-

Fig. 8: New SeaWolf VIII torpedo launcher and torpedo.
Design mock-up generated in Solidworks.

1) Torpedo: SeaWolf VIII utilizes two spring-loaded tor-
pedo launchers that consist of a combination of FDM and
machined components. The mechanical design of the launcher
allows the spring to be loaded with a standard wrench that
drives a rack and pinion mechanism. A ratchet gear and pawl
prevent counter-rotation as the spring is loaded and hold the
launcher in the loaded position until the robot is ready to fire.
The mechanism is released using a watertight servo motor,
which disengages the pawl from the ratchet gear, allowing
the spring to unload and fire the torpedo. This reload mecha-
nism is a significant improvement over the previous iteration,
which required a full shutdown of the robot and limited the
power of the spring we could feasibly use. Several FDM
printed projectiles were designed, with the chosen fusiform
shape performing most favorably. Fig. [§] shows the chosen
subsystem design. It is simple, minimizes the required amount
of additional electrical infrastructure, and enabled iterative
prototyping. This allowed for rapid development using an
FDM printer while still meeting task requirements.

2) Dropper: The drop-
per mechanism for Sea-
Wolf VIII consists of three
major components: a 5V
electromagnet, a magnetic
440C stainless steel ball,
and a 3D-printed housing.
The electromagnet is seated
in the upper portion of the
housing via a screw-on lid.
The stainless steel ball, or
marker, rests in the lower

Fig. 9: SeaWolf VIII drop-
per enclosure with electromag-
net and marker stored internally.
Design mock-up generated in
Solidworks.
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part of the housing. Current

continuously runs through the electromagnet to create a mag-
netic field, which holds the marker secure in the housing while
SeaWolf VIII is powered on. When the current stops, the
marker falls out of the bottom of the housing. Fig. [0 depicts
one of a pair of these droppers, which are attached to the
bottom of SeaWolf VIII.

G. Acoustics

Acoustic navigation via the passive sonar system requires
two central components: analog pre-processing and digital
signal processing. Both components work in tandem for our
acoustic system to produce reliable results for the robot to use
for navigation.

1) Signal capture and pre-processing: The acoustic signal
from the pingers occupies 25kHz-40kHz frequencies. This
pure tone signal motivates a simple pre-processing system,
which accounts for signal attenuation, white noise, and other
audible frequencies. Signal capture uses a linear array of four
hydrophones spaces at 2.5 cm apart. The hydrophones are
phantom-powered. The system includes buffer circuitry, isolat-
ing the hydrophones from the rest of the system, and biasing
circuitry, which removes the need for a negative voltage rail by
using a 0dB gain op-amp circuit to change ground reference
to the half supply voltage. A 10.4dB gain non-inverting op-
amp circuit is used as a pre-amplifier to ensure a larger
input signal capture. It is fed to four cascaded Chebyshev
bandpass filters with a peak gain of OdB or small attenuation.
Without significant pass band gain in the filtering stage, the
pre-amplifier becomes necessary, as small attenuation in the
pass band can compromise the signal integrity of small signals
captured at hydrophones. We use a digitally controlled linear
amplifier, the LTC6910, for post-amplification. This stage
amplifies the filtered analog waveform such that the peak-to-
peak voltage occupies the entire 5V range of the analog-to-
digital converters (ADC) that follow.

Different amplification is necessary because path loss will
change with distance by the inverse square law as we approach
the pinger. The entire response of the system is depicted in
Fig. The Chebysheyv filter gives a steep frequency cutoff
at the corner frequencies of 25 KHz and 40 KHz ensuring the
only received signals are those in the band of interest that are
used by RoboSub.

2) Digital signal processing: We deploy digital signal
processing (DSP) on a Digilent Basys 3 FPGA develpment
board. The onboard FPGA, Xilinx Artix-7, contains numerous
DSP cores and several intellectual property cores that we use
in development.

The base system is a Bartlett direction of arrival estimator,
similar to what is described in [I1]]. The competition envi-
ronment only has a singular signal source active at a given
moment, implying that we do not need to estimate the angle
of arrival for several signals in a single time window. This
lends nicely to the Bartlett beamformer as it is simple to
implement, but is only very successful with few signal sources
[12]. The resolution of the Bartlett is also lesser than the



comparable direction of arrival estimators such as minimum
variance distortionless response (MVDR) and multiple signal
classification (MUSIC), but with only a singular source at a
time, this weakness matters less, leading us to favor the Bartlett
strategy which is simple to implement requiring comparably
very few matrix operations.

III. TESTING STRATEGY

A. General testing strategy

Our approach to testing our subsystems requires simulation-
based and in-field testing to validate that our systems work.
Simulation-based testing pinpoints flaws and ensures that our
designs provide expected results. In-field or “pool testing” vali-
dates all systems proven to operate successfully via simulation.
We aimed to have at least two monthly pool tests to ensure
sufficient testing of our custom control board and software
architecture. Using a replica of the RoboSub course at pool
tests allows the team to observe progress and re-evaluate goal
timelines. See Appendix B.

B. Software and CV

Automated tests and continuous integration checks validate
system functionality. Through a combination of simulation and
field testing, we evaluate the performance of our software
and identify areas of concern. We use simulations to train
and tune our CV algorithms as described in The
Unity engine [/] is our choice of simulation environment.
This simulator’s ability to generate thousands of photorealistic
images in various environments in minutes enables a quicker
turnaround for tuning our software. See Appendix B-III.

C. Manipulation

1) Torpedo: Once assembled, the torpedo system was fired
repeatedly in and out of the water to ensure independent
actuation of each servo and characterize projectile motion
in water. This method validated the design and identified an
optimal projectile shape. See Appendix B-IV.

2) Dropper: The dropper electromagnet was connected to
a DC power supply at 5V and tested repeatedly in dry and
wet environments. These tests were successful and repeatable.
Pool testing was also successful, with the marker staying stable
in the housing through various underwater maneuvers and
deploying consistently in the pool.

D. Acoustics

All testing of the acoustical direction-of-arrival (DOA)
system was performed through theoretical verification and
both digital and physical simulation. Utilizing MATLAB [13]],
sinusoidal waveforms were generated at our test frequency
and discrete additive white Gaussian noise was inserted to
model a realistic operation environment. In code, the simulated
arrival angle of the sinusoid is controllable, allowing us a
benchmark for the performance of the Bartlett beamformer
DOA algorithm at all possible angles. The Bartlett beamformer
proved accurate at numerous angles, but would see spatial
aliasing toward broadside angles.

The implementation of this algorithm, shown in Fig.
involved writing and integrating Verilog modules. Utilizing
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Fig. 10: Bartlett Beamforming DOA Algorithm

AXI4-Stream, an efficient pipe-lined digital signal processing
design was created. With a data-path to execute the beam-
former, fixed—point hardware-specific testing was able to be
carried out. A combination of simulation in Vivado and ideal
data from MATLAB allowed for a large range of test points
to be compared. The results allowed for verification of the
algorithm on an Artix-7 FPGA. Inherently, tests are limited to
giving insight into how the system reacts to specific circum-
stances, but a large volume of testing instills the confidence
in the system necessary for deployment.
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Appendix A: Component Specifications

Component Vendor Model/Type Specs Qty.  Custom/Purchased Cost Year Acquired
Waterproofing
Main Hull OnlineMetals 8” Aluminum Tube 0.25 x 25.75 in 1 Purchased $165.56 2022
Battery Hull Blue Robotics 4” Watertight Enclosure 100 mm x 200 mm 2 Purchased $638 2023
Main Hull Endcap Mecha Inc - 8” 6061 Aluminum 2 Purchased $114.94 2022
Camera Enclosure McMaster-Carr - - 2 Custom $33.2 2023
‘Waterproof Connector Plug Fischer S Series - 22 Purchased $750 2022
Waterproof Connector Receptacle Fischer DEU Series - 22 Purchased $750 2022
Electronic/Power System
Load-Balancing Board (LBB):  Digikey LTC4359CMS8 150 pA/4V-80V 2 Purchased $6.43 2021
Ideal diode controllers
Load-Balancing Board (LBB):  Mouser Electronics IXTN660N04T4 - T 40V/660A 2 Purchased $32.17 2021
MOSFET
Main Electronics Board (MEB):  Texas Instruments MSP430G2553 1.8 V-3.6 V 1 Purchased 2022
Launchpad
LiPo Battery Gens Ace GEA10K4S10E5 15.2V/10000mAh/100C 2 Purchased $154.99 2023
UBECs SoloGood - 5/3A Brushless Re- 3 Purchased $12.99 2023
ceiver Servo
Manipulators
Dropper - 3D Printed PETG 250g  Custom $5.75 2023
Electromagnet Adafruit 5V Electromagnet 5 Kg holding force 2 Purchased $9.95 2023
Torpedo Launcher - 3D Printed PETG 450g  Custom $11.50 2025
Servo Motor Zoskay High Torque Metal Gear 25KG hold force, 6.8 2 Purchased $17.99 2025
Servo v
Mechanical Systems Board (MSB):  Texas Instruments MSP430FR2355 16-bit/24MHz 1 Purchased $12.99 2022
Microcontroller
Controls
Control Board: Microcontroller Adafruit ItsyBitsy 512 KB flash, 192 1 Purchased $14.95 2022
KB RAM32-bit Cor-
tex M4 core
Control Board: IMU Adafruit BNOO055 9-DOF sensor, ARM 8 1 Purchased $34.95 2022
Cortex-MO0 based pro-
cessor
Thrusters Blue Robotics T200 Brushless DC motors 8 Purchased 2022
ESCs Blue Robotics Basic 7-26V/30A 8 Purchased $36 2018
Acoustics
Active Sonar Blue Robotics Ping360 50m range, 300m 1 Purchased $2,750 2022
depth, SW
Hydrophones Aquarian Audio H2C 10 Hz-100kHz Range 4 Purchased 2019
Power Distribution - Custom PCB Solution 4 Way Distribution, Custom ~$5 2022
Rev. 2 1 A/Channel, 5 Vdd,
2.5 V AGND
Acoustics Front End - Acoustics Single Channel 500 KSps, 25kHz- 1 Custom ~$20 2022
Rev. 1.2 40kHz BPF, 20dB-
60dB passband am-
plification
Digital Signal Processing Unit Digilent Basys3 Xilinx Artix-7 FPGA, 1 Purchased $165 2022
90 DSP Slices, 1800
Kbits Block RAM
Software Architecture
Operating System Qengineering Ubuntu 20.04 - - Open-Source $0 2022
Primary Language Rust Foundation Rust 1.79.0 - - Open-Source $0 2023
Development Language Python Foundation Python 3 - - Open-Source $0 2022
Serial Communication Tokio Tokio-serial - - Open-Source $0 2022
Automated Testing junit-team Junit 4.13.2 - - Open-Source $0 2022
Deployment OpenSSH ssh - - Open-Source $0 2022
Build Tool Rust Foundation Cargo 0.80.0 - - Open-Source $0 2022
Video Server Gstreamer Team Gstreamer 1.2.0 - - Open-Source $0 2023
Video Processing OpenCV OpenCV 4.6.0 - - Open-Source $0 2022
Vision
Cameras ArduCam IMX219 4K 8MP 2 Purchased $34.99 2023
OpenCV Big Vision LLC 4.6.0 - - Open-Source Open-Source 2023
YOLO Darknet v5 - Open-Source Open-Source 2023
Frame
Perforated Aluminum Side 1 Custom KB - 8 x 10.48 x 0.250 in Custom Donated 2018
Metalworks
Perforated Aluminum Side 2 Custom KB - 8 x 10.48 x 0.250 in Custom Donated 2018
Metalworks
Hull Cradle Custom KB - 8 x 10.48 x 0.250 in Custom Donated 2018
Metalworks
Main Hull Threaded Rod McMaster-Carr - 8 x 10.48 x 0.250 in Purchased 9 2018
Interchangeable Central
Platform
Acrylic Backplane McMaster-Carr - .25” Cast Acrylic 1 Purchased $36 2023
& Customized
Acrylic Truss McMaster-Carr - 25”7 Cast Acrylic 4 Purchased $14.40 2023
& Customized
Rings - 3D Printed PETG 1250g Custom $28.74 2023
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Appendix B: Test Plan and Results

I. TEST SCHEDULE

We performed seven major types of testing to debug and validate our systems. These tests included our navigation systems,
manipulation systems, waterproofing measures, and full system tests. A legend of what our main protocols for simulation and
testing is listed in Table I below.

TABLE I: Legend of System and Simulation Test

Test/Simulation

Application

Acoustics Simulation and Testing Consists of testing how well acoustics circuits can detect and process pings in
simulation and at pool tests. This helps determine if acoustics system can detect
and process pings in an environment similar to the RoboSub competition.

CV Simulation Consists of running mission and vision code through a simulated environment
consisting of a pool, robot, and tasks at RoboSub. Each test consists of both
running simulation and debugging. On many occasions issues found in code
was debugged/improved outside of that time frame and simulated again.

Leak Tests Consists of sealing the robot and vacuum testing its main hull and battery hulls.
For each test, a pressure of -25 mm/Hg was held for a specific duration of time.
Vacuum was held on the main hull for 40 minutes and each battery hull for
10 minutes. Leak tests were performed before each pool test. In the event that
there appears to an issue with air leakage during a leak tests longer tests are
held.

Locomotion Simulation Consists of development and testing of simulation to validate math and
orientation of custom control board. Used to identify issues with control board
and correct them without in-water testing time.

Manipulation Systems Test Consists on testing each mechanical system via its trigger to determine if system
works.

Pool Tests Consists of testing SeaWolf VIII in pool. Tests conducted at pool tests include
locomotion, acoustics, CV, mission code, manipulation systems, sonar data
collection, and full system tests.

Sonar Data Collection Tests Consists of stabilizing SeaWolf VIII in different areas of the pool facing
different obstacles for data collection. Tests are conducted at different ranges,
altered frequencies, and varying obstacles to fine tune the sonar module.
Conducted to create a sufficient data pool for the software team to develop
algorithms for missions.

System Dry Run Will occur before each pool test and after major changes to the electrical system
have been made. Longer sessions would consist of doing checks on all of the
electrical subsystems to ensure expected output was occurring. Thrusters are
also run to ensure proper communication and determine if re-calibration is
necessary. Typically 30 minutes each.

Table II presents the number of hours spent simulating and testing various systems and operations of SeaWolf VIII. This
table includes planned hours of simulation and tests as well. Details of what each test entails is listed above in Table L.

TABLE II: Hours Spent Simulating and Testing Systems

To-Date  Planned

Acoustics Simulation and Testing 20 20
CV Simulation and Testing 60 10
Leak Tests 24 3
Locomotion Simulation 50 2
Manipulation Systems Test 5.66 3
Pool Tests 74 12
Sonar Data Collection 8 12
System Dry Run 14 1.5

Total 255.66 93.5
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Locomotion testing and validation were conducted during the fall semester as completion of missions are not possible
without proper orientation calculations and reliable communication between the control board, MEB (Main Electronics
Board), and the computer. Sonar data collection and further development of software architecture and communications were
prioritized during the spring semester. Footage of props was collected for the purpose of testing simulated CV algorithms on
real test cases. Summer pool tests prioritizes testing of missions and competition runs. Table III lists all completed and
planned pool tests for the 2024-2025 academic year.

TABLE III: Completed and Planned Pool Test Dates

Semester Fall Spring Summer
Dates October 6th, 2024 January 26th, 2025 June 7th, 2025
October 27th, 2024 February 22nd, 2025  June 14th, 2025
November 2nd, 2024  March 1st, 2025 June 21st, 2025
March 22nd, 2025 June 28th, 2025
March 29th, 2025 July 12th, 2025*
April 5th, 2025 July 19th, 2025*
April 12th, 2025 July 26th, 2025*

May 17th, 2025
May 31st, 2025

Hours Tested 15 43 28
Planned Pool Test Dates are denoted by ”*”.
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II. LOCOMOTION TESTING AND VALIDATION

Proper testing of the control board is critical to mission success. However, this is a complex task requiring significant
amounts of testing time during development. Due to limited in-water testing time and to ensure sufficient testing time for
mission code, communications, and mechanical systems, a significant portion of control board testing occurred in simulation.

The simulator was developed using an open source 3D game engine, Godot. The selection of this tool for simulation was
solely motivated by prior familiarity with this game engine. Godot includes a 3D rendering and physics engine, allowing
simulator development time to focus on vehicle modeling and control board math validation.

The simulator not only models SeaWolf VIII, but simulates a control board as well. This allows testing and validation of
mathematical methods in a high-level language where math libraries are already provided (by the game engine). Additionally,
it allows mission code unit tests to run under simulation without access to any control board hardware or sensors.

Rear View Right View Top View

Thruster Speeds [ 03 Control Boal
Position: (>

Euler Orientation: (

Quat Orientation

Choard Mode:

Motor Watchdog:

State to Clipboard

Fig. 1: Control Board Simulator

However, a simulated control board is only capable of validating the approach to the problem, not the actual device. The
largest risk with simulation testing is that the real control board’s firmware has an implementation error. Even if the math is
correct, it can be implemented improperly or other firmware bugs can prevent proper operation of the device. To address this,
the simulator was expanded to allow use of a physical control board to control the simulated vehicle. In this operating mode,
the simulator provides simulated sensor data to the control board, and receives motor speeds from the control board. Thus,
the control board firmware itself can be tested and debugged under simulation.
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III. ML TRAINING AND RESULTS

Training and validation of ML algorithms is vital to their performance in detection and identification of targets. This requires
an efficient and reliable environment for us to train, test, and validate our algorithms. These needs require a simulator with
capabilities to support simulation of robotic systems and a powerful game engine to generate photorealistic images and
environments to increase the model accuracy. As such, we developed our simulator using Unity because it provides sufficient

support for simulating robotic systems in virtual environments and is a game engine that can produce hyper-realistic
simulations.

(a) (b)
Fig. 2: Simulation of slalom poles in pool environment (a) and detection of slalom poles in simulated pool environment (b)
The simulation consists of images ranging from blue to blue-green for simulating various water and visibility conditions. The

generation of the environment also randomizes the position and rotation of the camera and pool which challenges the
algorithm to become accustomed to undesirable conditions. The training/testing/validating split of datasets used is 80-10-10.
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Fig. 3: Box Loss of ML algorithm in training and validation data over an epoch of 100 (a) and mean average prediction of
Buoys over epoch of 100 (b)

A considerable risk in developing ML models is the datasets generated oftentimes is biased to the simulated environments
which results in negative performance of the algorithm in real-world conditions. The drop in performance can be associated
with a simulations inability to simulate all conditions possible in the real-world which affects the neural networks ability
process its input in real-world environments. To mitigate these issues, the simulator can be easily adjusted using a color
slider to fit additional water conditions previously not possible. Additional assets can be added to the environment to increase
variety of datasets, resulting in a more robust model. Finally, one of the best methods to mitigate a model’s bias to simulated
environments is incorporating real data in its training, testing, and validating datasets to improve the model’s accuracy.
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IV. TORPEDO PROJECTILE TEST RESULTS

Primary testing of torpedo projectile shape was through in-field testing in air and water. The test procedure included firing
the assembled torpedo system and video-capture of the range of the torpedo projectile as measured by a 36 in ruler. A visual
of a torpedo projectile test in water can be observed in Fig. 4.

RedScrew

BlackPoint

RedBulb

Fig. 4: Torpedo Projectile Testing

Table IV below summarizes torpedo projectile test results. Forward distance was defined as the distance the back end of the
torpedo traveled away from the end of the launcher before sufficient momentum loss resulting in vertical deviation occurred.
Side-to-side deviation is listed as ‘minimal’ if no qualitative deviation was observed.

TABLE IV: Torpedo Projectile Data

Projectile Avg. Forward Distance =~ Max Forward Distance  Side Deviation (first 30cm)  Side Deviation (Total)  Pass/Fail

BlackPoint 23~ 25.5” Minimal 1-27 Pass
RedScrew 17.5” 18.5” Minimal Minimal Pass
RedBulb 36” 427 Minimal Minimal Pass

All torpedo models met the desired minimum 12” (30cm) straight-line travel requirement with the
RedBulb outperforming the other designs.
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