University of Florida SubjuGator 9

Design and Development of the SubjuGator 9
Autonomous Underwater Vehicle

Adam McAleer, Joseph Goodman, Lester Bonilla, Ethan Mitchell, Adrian Fernandez, Carlos Chavez, Ryan
Hoburg, Cameron Brown, Lorant Domokos, Alex Johnson, Keith Khadar, Adam Hamdan, Daniel Parra, Eric
Schwartz

Abstract—SubjuGator 9 is an Autonomous Underwater Vehicle
designed to compete in the RoboSub competition. The vehicle is
designed to be a platform with strong fundamental capabilities,
such as localization and movement, that can be improved upon
with competition-specific systems. SubjuGator harmoniously
combines mechanical, electrical, and software systems into a
robust autonomous system. The mechanical systems provide a
configurable base for mounting electronics and mechanisms.
The electrical systems power the motion of the vehicle while
providing connectivity between systems. Software systems are
implemented in ROS2, facilitating asynchronous processes and
task completion. The team uses a rigorous schedule to constantly
test and debug the systems.

I. INTRODUCTION

SubjuGator 9 (Fig. 1) is the latest iteration of the SubjuGator
platform, a family of autonomous underwater vehicles (AUVs)
that have been in development for almost 30 years. The Ro-
boSub 2025 competition is the first deployment of SubjuGator
9.

Much of SubjuGator 9 was originally designed before the
COVID-19 pandemic, but was delayed due to in-person work
restrictions. Further delays resulted from a lack of transfer of
knowledge during the pandemic, as new and existing members
of the lab were not able to work together. As a result, the elec-
trical and software systems for SubjuGator 9 were completely
redesigned during 2024 and 2025. This complete redesign
allowed for a flexible approach to competition strategy.

As RoboSub 2025 will be the first deployment of SubjuGa-
tor 9, the team’s goals for the competition are to have a func-
tioning baseline vehicle capable of movement, localization,
and basic task completion. All sensors, actuators, and software
packages should be robust to facilitate the later addition of
capabilities.

II. COMPETITION STRATEGY

Our competition strategy revolves around developing robust,
well-understood, and well-documented modules that provide a
platform that is easy to extend and debug. We use a bottom-up
approach to determine what features are necessary to complete
each task. We then focus our efforts on features with the widest
applicability, where the potential to score points versus the
time spent developing is highest.

To manage the growing complexity of the system, we
independently test new features before integrating them with

Fig. 1: SubjuGator 9

the rest of the system. This helps ensure reliability at the
subsystem level, reducing errors during integration.

We focus on guaranteeing points in competition with re-
liable and functioning systems, rather than spending time
implementing new features. As competition draws closer,
we prioritize testing and completing tasks that leverage the
strengths of our vehicle. For example, quality localization and
precise movement will secure points in tasks that use these
behaviors, such as the navigation channel and dropper tasks.

Our strategy places emphasis on consistent and structured
in-water testing. As the competition approaches in five weeks,
over the last six weeks, we have performed over 15 testing
sessions each of about five hours in length. Our feedback
loop for testing sessions involves writing notes at the end
of each session about the successes, failures, discoveries,
and hypotheses made during the session and our plan of
action before the next session. We use these notes to drive
development and adjust expectations for our timeline.

Review of the week’s successes and failures motivates us
and keeps the next actionable step clear and unobstructed
by the growing complexity of the system. This part of the
strategy increases the confidence of the team in working with
the system in water. This familiarizes the team with problem
solving through collaborative debugging in a competition-like
environment. Increasing our efficiency during in-water testing
sessions will directly increase our efficiency during our limited

University of Florida SubjuGator 9

pool time at the competition venue.

III. DESIGN STRATEGY

To support our competition strategy and maximize points
earned at the competition, SubjuGator 9’s design is extensible
and easy to test. Our goal is to maintain a platform that
can adapt to changing competition requirements. Using our
bottom-up approach, we design and develop a minimum viable
product with baseline capabilities of localization and move-
ment control. All additional subsystems are then guaranteed
to have a functional base.

A. Mechanical

1) Structure: SubjuGator’s frame is made from four alu-
minum sheets welded together. Hardware, pressure vessels,
and thrusters attach to the frame via machined slots and mount-
ing holes. Eight carbon fiber tubes provide structural support
and the ability to easily mount hardware. The computer box,
a hollowed-out block of aluminum stock, and the frame are
anodized blue for both corrosion resistance and visual appeal.
A waterjet-cut aluminum bottom plate is mounted below the
computer box to support additional hardware.

The computer box houses the main electronic systems for
the vehicle, including the main computer (a Nvidia Jetson Orin
NX), power delivery systems, and networking devices. The
minimum wall thickness of the computer box was calculated
to withstand a vehicle depth of 35 m, with a safety factor of
3.

2) Kill Wand: SubjuGator’s kill wand mounts to the carbon
fiber rods. The mount is re-positionable by sliding it along the
rods. A magnet at the end of the kill wand that interacts with
a hall effect sensor on the inside of the computer box lid. The
kill system is easy to trigger by pulling the wand.

3) Thruster Configuration: Eight thrusters move the vehicle
with 6 degrees of freedom. The configuration allows for the
loss of a thruster without losing a controllable degree of
freedom.

4) Depth rating: An important consideration when design-
ing the vehicle was determining a maximum depth rating,
based on the depth of the shallowest rated component. The
components susceptible to mechanical failure due to high pres-
sure at depth are the computer box, navigation tube, camera
tubes, hydrophones, and doppler velocity logger (DVL). The
component to fail at the shallowest depth would most likely be
the camera tubes, rated for a depth of 33 m with a safety factor
of 3. This maximum depth was determined to be acceptable, as
use cases of the vehicle are the RoboSub competition (with a
maximum depth of 2.1 m) and the deepest testing environment
the team has access to has a maximum depth of 5 m.

5) Mounting: SubjuGator 9 is designed to be easily me-
chanically configurable. All pressure vessels are secured with
custom 3D-printed brackets which are closed using clevis or
quick release pins, allowing tool-less maintenance to the vehi-
cle. Large blocks of non-compressible foam cam be attached
to the carbon fiber rails using snap-on clips, allowing for quick
removal during transport of the vehicle.

Fig. 2: Dropper

Fig. 3: Gripper

6) Buoyancy: SubjuGator 9 uses non-compressible foam to
maintain a positive buoyancy of more than 1% of its weight
(above the 0.5% required). Exceeding the requirement reduces
the need to reconfigure buoyancy as new components are
added to the vehicle. Non-compressible foam is superior to
cheaper and more readily available alternatives, such as pool
noodles, because its flotation changes minimally as a function
of depth and time deployed.

7) Mechanisms: SubjuGator 9 has a dropper (Fig. 2),
gripper, and torpedo launcher (Fig. 3). These mechanisms are
simple and quickly replaceable since they use 3D-printed parts
and the same waterproof servo. They are strategically mounted
near cameras to improve task accuracy.

B. Electrical

1) Electrical Compartments: SubjuGator has two main
electrical systems: the computer box and the navigation tube
(NavTube). The computer box houses the main computer, an
Ethernet switch, and power systems. The NavTube houses
three sensors: the inertial measurement unit (IMU), pressure
sensor, and hydrophone electronics. One cable connects the
NavTube and computer box, which provides power and en-
ables data transfer.

The NavTube separates the IMU from high current compo-
nents that cause interference. The NavTube is easily removable
and serviceable. Electrically, the only requirement to interface
with the NavTube is a power over Ethernet (POE) switch.

University of Florida SubjuGator 9

E/,

Fig. 4: computer box section view showing layered architecture.

2) Layered Architecture: The computer box is organized
into three stacked layers (Fig. 4). The layers trade vertical
space for added surface area. The placement of components
within these layers is based on the expected frequency of
access. The added difficulty of servicing the bottom layer is
offset by the added ease of organization and cable manage-
ment.

The bottom layer contains and separates all input cables
from the underside of the sub. The cables are routed to
the necessary layers through channels along the sides. The
number and type of ports available aim to be flexible and not
prescriptive. Unused input cables are tucked within the bottom
layer and are retrievable from the second layer. Service to the
bottom layer is only necessary in the case of failure of a wet-
mate connector.

The middle layer holds the power system. Input from
the battery is passed and split into two bus terminals, both
nominally at 14.8 V. One bus provides power to the thrusters
and the second bus provides power to the main computer, POE
switch, thruster control board, and relay control board. The
space cost of having two busses is offset by the advantage of
controlling power to all thrusters with one relay. Additionally,
we avoid the complexity of extra relays.

Power to thrusters is independent of power to all other
components, allowing SubjuGator’s computer system to oper-
ate normally when the vehicle is killed. The thruster bus has
a higher current requirement, with large ring terminals. The
second bus requires lower current with smaller and easy-to-
crimp ferrule terminals. When a new component needs power,
it is simple to remove the top layer and add the connection to
the terminal.

The upper layer contains the components most frequently
accessed: the main computer, POE switch, thruster control
board, relay control board, and Hall-effect board. These
components must be regularly accessed to flash firmware,

view status lights, make new Ethernet connections, and debug
hardware issues.

3) Ethernet Interconnect: The NavTube system communi-
cates as a network device through a gigabit POE switch. The
POE switch supports the addition of powered devices to be
attached as part of the network. The devices act as discrete
modules that can be accessed and tested without relying on
other components.

4) Kill System: Power to the thrusters is controlled by a
relay in series with the electronic speed controllers (ESCs).
When killed, power to each thruster is cut. A relay control
board implements logic to accept a kill signal from five sources
and control up to six relays. The system currently accepts
signals from two sources: the Hall effect board and the thruster
control board. The Hall effect board detects the presence of the
kill wand. When the wand is removed, the Hall effect board
sends a signal to the relay control board to cut power to the
thrusters. The thruster control board’s microcontroller raises a
kill signal when a heartbeat connection to the main computer
is lost or when a kill request is sent from the main computer.

The design of the kill system facilitates robust testing of
each kill source and each kill scenario. It also allows for easy
modification and addition of new sources and different relay
configurations.

C. Software

1) ROS2 Architecture: All of SubjuGator’s systems are
designed with ROS2 Jazzy. ROS2 (Robot Operating System
2) is a framework for handling complex concurrent systems.
It also provides helpful libraries for localization, control,
and frame of reference transformation capabilities. ROS2 en-
ables thread-safe concurrency between threads (called nodes)
through subscriber-publisher and server-client architectures.

2) Mission Planner: High-level autonomous behaviors are
created using a custom mission planner system built in ROS2.

University of Florida SubjuGator 9

Kill Wand

NavTube Computer Box
/ \ / Hall Effect Kill Board
Sensor
) —
Depth
Sensor Kill
System Thrust Control Board
Ty
Hydrophones » Raspberry Pl » r ~
J POE Jetson Orin
0 L)
*
IMU — []
'd Y
DVL Cameras
\ / K h g /

A
Thrusters

Fig. 5: Electrical Functional Block Diagram

The mission planner is implemented using ROS2 actions, a
core communication type in ROS2 that facilitates the transfer
of goals and feedback between nodes and servers. The system
is composed of one central mission planner node, mission
servers, and a configuration YAML file.

The mission planner node parses a mission from the YAML
file and extracts tasks and relevant parameters. The node then
sends goals along with any parameters as a ROS2 action goal
to the corresponding mission server. The node then awaits
feedback from the mission server to determine whether the
goal is complete or if the task needs to be retried.

Mission servers are ROS2 action clients that receive a goal
(a task and parameters) and execute predefined autonomous
behaviors. The action clients can send feedback to the mission
planner node, such as the distance remaining until reaching a
target, whether a task is successfully completed, or reasons for
not finishing a task (such as a sensor error, losing track of an
object visually, or timing out).

A mission file is a YAML file that can be quickly modified,
dictating tasks such as “navigate around an object” or "find an
object with cameras.” Parameters such as task timeout, camera
target, or orbit radius can be easily specified in the YAML file.

3) Localization: The DVL, IMU, and pressure sensor are
fused into a position estimate using an extended Kalman Filter
provided in the ROS2 robot localization package. This position
estimate informs the PID controller.

Localization uses two separate reference frames called odom
and base_link. The odom reference frame is fixed and defined
by the vehicle’s starting orientation. Base_link is the vehicle’s
reference, which rotates and translates with the vehicle.

4) Vision: SubjuGator used two HD Dell webcams for
vision - one forward facing and one down facing. YOLOv11
nano provides computer vision for detecting objects and their
position in the camera frame. This facilitates identifying tasks,
moving through and around objects, and navigating using path
markers.

5) Controller: The SubjuGator 9 vehicle uses a 6-degree-
of-freedom PID controller implemented with the ROS2 con-
troller toolbox. The gains for the controller were determined
through extensive experimentation. The PID controller uses
the error between the current pose and a goal pose to publish
a command wrench.

6) Closed-Loop Control: Localization, the controller, and
the thrusters come together to form closed-loop control (Fig.
6). The thruster manager decomposes a wrench into individual
forces needed to be generated by the vehicle’s thrusters to
achieve the desired wrench. This resulting pose is measured
by the sensors to re-inform the PID controller, which will
correct for any error.

7) Debugging with rqt and Rviz: ROS2 has a suite of
debugging and visualization tools contained in the rqt and rviz
packages. All numerical topics can be plotted using the rqt plot
tool, allowing easier analysis of the vehicle’s performance.
Rviz (Fig. 7) is used to debug issues with reference frames,
transforms, and relative sensor positions.

8) Simulation: Simulation is used to test autonomous be-
havior without physically running the vehicle. The simulator
is implemented using Gazebo, and the model is implemented
to closely resemble the physics acting on the real vehicle.
The primary benefit is the ease of testing mission planning
algorithms that can be transferred to the real submarine.

University of Florida SubjuGator 9

External
Forces

Dirift and
Drag

Y

Localization

Position
¥ Estimate
r ~

Moving in

Water PID

AN y

Control
" Efforts
s ~

Spinning
Thusters

Fig. 6: Closed loop control

Fig. 7: The vehicle visualized in RViz

IV. TESTING STRATEGY

A. Testing Schedule

We test SubjuGator in-water two or three times a week. We
use GitHub issues to form a testing schedule (Fig. 8), which
allocates time for localization, PID, and camera.

B. Pre-Flight

Pre-flight is a software procedure that mimics what the
vehicle will do in the pool. Pre-flight spins the thrusters,
checks sensors, pings the computers, and checks the camera
connections. Pre-flight ensures the vehicle is in a working state
before we take it to the pool.

@ Localization with all sensors #106

© Tune PID #107
@ Tune kalman filter #108
@ Navigate to pinger #109
@ «ill system tested #110
© Get camera data #111
© Working cv #112
© Navigate from cv #113
© Prequal #135
© Mechanisms on sub #114
© Missions #134
© Mission planner #115
© Full competition run #116
© Make Video #130
© write Paper #129
[© make presentation #131
© cameras #117 M
@ Front Cam #118

Fig. 8: Testing schedule for SubjuGator

C. At the Pool

Once the vehicle arrives at the pool, the team sets up and
re-runs Pre-flight. A modified Pelican case (called the network
box) connects the vehicle to poolside computers. The vehicle
goes into the pool with a designated swimmer. Common
swimmer tasks include: orienting the sub, monitoring battery
voltages, acting as a reference point, and killing the sub.

D. Bagging Data

ROS2’s bag functionality can record and playback data.
All of the vehicle’s sensor data, thruster efforts, and position
estimates can be recorded. Any test that the vehicle fails at
the pool is recorded and re-run in-lab. This means software
changes to systems such as localization and the PID controller
can be tested before the vehicle goes in the pool.

ACKNOWLEDGMENT

Team SubjuGator AUV, a project of the Machine Intelli-
gence Laboratory (MIL) would like to extend our sincerest
gratitude to everyone who has supported the team. We extend
our thanks to the University of Florida’s departments of Elec-
trical & Computer Engineering and Mechanical & Aerospace
Engineering for their continued support. We would also like to
thank the CIMAR lab for providing the essential resources and
facilities for our work. We are also deeply appreciative of our
major industry sponsors: Sylphase, L3Harris Corporation, JD-
Squared, and Texas Instruments. A special thank you to our
alumni donors and advisers, Dr. Eric Schwartz, Dr. Carl Crane,
and Matt Griessler (a MIL alumnus), for their invaluable
guidance and mentorship throughout this project.

