Michigan Robotic Submarine: Strategy, Design, and
Implementation of Theseus

Arnav Mummineni, Melissa Peters, Luke VanderHeuvel
Muskaan Mittal, Kaden Chirco, Nathan Kuo, Carter Kassin, Zayn Baig, Ashley McPike

Abstract—Michigan Robotic Submarine is an undergraduate
student project team at the University of Michigan in its fourth
year participating in the RoboSub competition. We developed
our autonomous underwater vehicle (AUV), Theseus, shown in
Fig. 1, to improve our accuracy and reliability on previous
tasks, opening potential for future developments. To improve
iteration speed, we developed a new bottom plate with additional
component mounting points. To simplify our electrical system,
we redesigned and consolidated our flight controller and motor
control systems, removing redundant components. We continued
to develop our task planning framework to decrease error poten-
tial and increase reliability. Finally, we laid the groundwork for
future improvement like improved localization and control using
our DVL, additional mechanisms to complete new tasks, and
adding electrical safety mechanisms to prevent future damage
and setbacks.

I. COMPETITION STRATEGY

This year we focused on increasing reliability on the tasks
we attempted previously and adapting to the modified tasks,
such as the change from the buoy to the slalom. Our recent
changes to our system demonstrate its strong modularity and
its ability to improve over time to tackle this year’s and future
years’ RoboSub challenges. Some areas that we identified as
strengths included our machine learning pipeline, which we
were able to quickly train and utilize at previous competitions
along with a robust task planner to map out the failure cases
and fallback states for each task. In turn, we continued to
develop our classical computer vision pipeline and design
additional mechanisms.

A. Target Tasks

Our target tasks for the 2025 RoboSub competition are the
coin flip, gate, slalom, and bin tasks.

1) Heading Out—Coin Flip: To complete the coin flip
task, our design requires the robot to be sensing its
environment before starting the run so that it can record
the angle that the gate is present at. This provides a
reliable method for identifying the initial angle needed
to turn to face the gate, regardless of the result of the
coin flip.

2) Collecting Data—Gate: To pass through the gate, we
use a machine learning model to detect the image on
the gate and center on it. We decided to always choose
the same image to center on, as this allows us to
focus on optimizing the model’s performance for that
specific image. Additionally, this makes it so that we
can complete the bin and slalom tasks in the same way

3)

4)

5)

Fig. 1. CAD of our 2024-2025 AUV, Theseus.

every run to maximize points (namely, the same side of
the slalom poles and the same side to target on the bin),
enabling more consistency throughout our runs.

Path: In order to reach the slalom and bins tasks, we
intend to use the path-marker, which makes use of
an additional camera on the bottom of the submarine.
Since we use classical computer vision algorithms for
our relatively low-resolution bottom camera, this sub-
system draws a reasonably low amount of computing
power. Should this system fail, we can use a hard-coded
“fallback” orientation, making the system sufficiently
reliable to offset its associated complexity.

Navigate the Channel—Slalom: We also aim to achieve
maximum points on the slalom task by identifying and
properly navigating the slalom. To identify the red center
slalom pole, we utilize the large horizontal field of view
(110°) of our front-facing stereo camera along with a
computer vision algorithm to detect the pipe based on its
shape and color. We decided to use a classical computer
vision algorithm rather than machine learning for this
task since classical algorithms excel at detecting simple
colors and shapes, and do not require the extensive data
and training that machine learning does. This simplicity
allows us to complete this task for maximum points
without having to tune complex models.

Drop a BRUVS—Bins: We intend to complete the bins
task for the first time, maximizing points by dropping
two markers into the side of the bin coordinated with
the slalom and gate tasks. For this task we designed
a dropper mechanism with simplicity in mind which
resulted in consistent and reliable dropping of a single

Michigan Robotic Submarine

marker. As such, there is a dropper mechanism mounted
on either side of Theseus to improve the symmetry
for hydrodynamic forces and point-scoring potential.
Similarly to the slalom task, we chose to use classical
computer vision rather than machine learning to detect
the bin due to its simple shape and color. To center
on the bin, we alternate descending and re-centering
on the bin, switching between the two based on the
visual distance to the center of the bin in the image from
the bottom camera. We do these movements separately
rather than simultaneously to reduce the potential of
roll/pitch movements causing the camera to lose sight
of the bin.

6) Return Home: Should the vehicle complete some or all
of the other tasks we set out to accomplish, we intend
for the vehicle to return to the start to claim additional
points. This may utilize the vehicles localization capa-
bilities or be pre-programmed depending on the success
of the other tasks.

II. DESIGN CREATIVITY
A. Mechanical

Fig. 2. CAD of top-view of Theseus.

1) Hull: Our hull is machined from 6061 aluminum with
half inch walls to allow for long term reusability. It is a
component we recovered from our previous AUV reduce
manufacturing costs, and its modularity characteristics enable
easy modifications. It has three windows, two for a front
camera and bottom camera and one that provides visibility to
the electrical systems for quick troubleshooting. A double o-
ring face seal was used at each port to create a redundant seal
that ensures a reliable leak proof sub. A lid is mounted to the
hull via hinges and secured in place using latches when the sub
is underwater. This hinge and latch system makes accessing
electronics a quick and simple process. The submarine also
contains an eight-thruster configuration, allowing it to move
in all six degrees of freedom.

Besides the hull, our AUV was completely refurbished
and redesigned for strength and modularity. With additional
components this year, including a grabber and a dropper
mechanism, we had to modify the frame around our hull to

Fig. 3. CAD of our grabber.

allow for the mounting of these components while also keeping
the vehicle light enough to be at least slightly positively
buoyant. We machined and installed a new bottom plate with
a plethora of holes and slots to allow us to shift components
and ballast weights as we test for weight distribution purposes
and prevent unnecessary redesigns. This bottom plate also
served the purpose of protecting the sub’s vertical thrusters
from impacts.

In addition to redesigning the AUV’s bottom plate, we also
machined new mounts for its angled thrusters. These mounts
contained thruster shrouds to protect from wall collisions.
These shrouds, as well as a new bottom plate, increased the
weight of the sub. To account for this additional weight, we
redesigned the lid of our hull, primarily reducing its thickness,
and by extension, its weight. This redesign allowed us to
discard a significant portion of buoyancy foam mounted to
the top of the vehicle.

2) Grabber: To collect and move samples, we implemented
a claw mechanism (Fig [3). Our design features four motor-
actuated claws linked through a set of worm gears and axles,
allowing for a more secure hold on the sample. When the
motor spins in one direction, the worm gear spins, causing the
claws to move farther apart until a wide enough gap between
them opens for them to grab a sample. Meanwhile, clamping
onto the sample is a simple matter of reversing the motors to
close and secure the sample. The arms and supporting frame
were SLA 3D printed due to their complicated geometries.
They are stiff enough to pick things up and hold them, while
still remaining weaker than the rest of the mechanism so that
they break first in case of a collision, since they are much
easier to make and less expensive to replace.

3) Dropper: This year, we also implemented a marker
dropper subsystem (Fig[4). Rather than employing one dropper
containing two markers, we incorporated two identical drop-
pers, with one marker in each to improve the reliability by
eliminating the possibility that two markers would unintention-
ally be dropped simultaneously. Each dropper consists of a 3D
printed tubular hopper in which the marker is stored. To hold
the marker in place before an intended drop, a bent sheet metal

Michigan Robotic Submarine

Fig. 4. CAD of our dropper.

arm covers the bottom opening of the tube. To release the
marker, a servo connected to this arm is actuated, uncovering
the bottom opening of the tube and allowing the marker to
fall. 3D printing the marker dropper hoppers was a quick and
easy way to produce the complex shapes incorporated into the
design.

B. Electrical

1) Newly Created Sub-Team: This year, we saw an un-
precedented growth in students interested in developing elec-
tronics crucial to our AUV. Thus, to more effectively lead
and compartmentalize our team, we separated the electrical
sub-team from the software team. To facilitate this transition,
we invested time and energy in gently onboarding the new
members (many of whom were freshmen) and familiarizing
them with the submarine and the team.

2) Fuses: After experiencing an electrical fire while live
testing the AUV, we decided to implement fuses on multiple
components. Accordingly, we ran fuses to each of our motor
control boards which we believe may be prone to electrical
fires, as well as our Doppler Velocity Log (DVL) because of
how expensive it would be to replace it. We used in-line fuses
for a quick and reliable solution, with future plans to integrate
current protection into our PCBs.

3) Hall Effect Sensors: To control the behavior of the AUV
while disconnected from its tether, we used two latching hall
effect sensors. Magnets trigger these sensors to control the
starting, stopping, and resetting of other sensors (in particular,
the IMU) without needing a live connection. The ability to
quickly control the state of our sensors externally improves the
efficiency of our testing setup time. Once a state is activated,
an indicator LED is lit for visual verification.

This year, we designed a custom PCB and 3D printed mount
for our hall effect system. Previously, the hall effect sensors
faced frequent disconnections due to loose wires and was dif-
ficult to troubleshoot due to wire overcrowding. The hall effect
PCB and mount remedied this issue by quartering the number
of wires and organzing components to ease troubleshooting.

4) Motor Control Board: We identified the motor control
electrical subsystem as a top priority due to its critical func-
tionality, frequency of maintenance, and large space overhead.

Previously, each of our eight thrusters had 3 long wires routing
across the bottom of the AUV’s hull. These 24 wires would
connect to eight electronic speed controllers (ESCs) and then
output to eight PWM signals which are controlled by our
new thruster mixing driver. In practice, this setup made the
subsystem difficult to organize and maintain. For example,
changing an ESC was intricate and prone to breaking other
components.

As a result, we chose to encapsulate all of these wires and
components into a custom printed circuit board (Fig. 5). We
now have two sets of Motor-ESC boards (one on each side
of the robot), where each set takes input from 4 thrusters
and outputs 4 PWM signals. The ESCs mount directly to the
PCB with screw-block terminals, so we can easily unscrew
and swap them out. The thruster motors and PWM output
connect to the PCB using Molex connectors which provide
strong connections and can be disconnected easily if needed.
This makes swapping out ESCs easier when necessary and
frees space inside the AUV for other components.

Motor Management v2

.
® CI . ®
MPs . PS5
o
‘mwe e e .

Fig. 5. Motor control board PCB design

An important consideration was the current limit for this
PCB. The first iteration of this board was operational but
failed during prolonged water testing due to insufficient current
rating and heat dissipation. The issue was that each ESC could
theoretically draw up to 30A which meant the board’s traces
had to support this requirement. Increasing the trace width to
support 30A was not a good use of space, so we decided to
increase the copper weight of each trace, essentially making
them “taller.” Additionally, we used techniques like dissipating
heat with thermal vias and large power and ground planes to
fully allow our motor control board to work with multiple
ESCs and motors for the second iteration of the board which
is currently in use.

5) Voltage Regulation: We continue to use our custom
power distribution PCB, which utilizes an off-the-shelf Pololu
5V 15A Step Down Regulator as our DC-DC converter to
supply up to 75 W to most of our electrical system compo-
nents. We utilize a separate OTS DC-DC converter to supply

Michigan Robotic Submarine

the Jetson Xavier NX with 13V.

Perception

~

Planning

N

Guid

v

L . Navigation,
Localization e

AN /
Hardware

Abstraction Layer

Fig. 6. High-level Software Architecture

C. Software

Our software stack utilizes the Robot Operating System
(ROS) to distribute our logic into distinct modules called
nodes. These nodes are organized into packages based on their
role in the AUV’s operation. Fig. [6] shows these packages, with
arrows representing the general flow of information between
packages. The majority of our code is written in Python, with
the exception of some portions of the hardware abstraction
layer, which is written in C.

1) Computing Architecture: Our computing architecture
features a distributed layout to enable high flexibility and
faster iteration speed. Most of our computing is performed
on our Jetson Xavier NX. This is the most powerful computer
in the system, so it is responsible for running our computer
vision, machine learning, high-level planning, localization, and
control modules. Until last year, our motor control was handled
by a Pixhawk PX4 flight controller using a Raspberry Pi 3B+
as an interface. To reduce technical complexity and weight, we
replaced the Pixhawk PX4 and Raspberry Pi with our custom
solutions that serve the same purpose: an Inertial Measurement
Unit (IMU), a thruster control board and driver, and thruster
mixing code. All of this now also runs on the Jetson Xavier
NX. For interfacing with our low-power devices—namely our
depth sensor, hall effect sensors, and indicator lights-—we
use an Arduino, which the Jetson communicates with via
rosserial.

2) Flight Controller: To replace the Pixhawk flight con-
troller, we developed an in-house thruster mixing system and
thruster control board driver. Our system was initially designed
referencing Tartan AUV’s thruster mixing and thruster control
code.

The code uses the positions and orientations of the thrusters
to construct a non-square matrix mapping the input powers
for the eight motors to the vehicle wrench (force/torque in
all six degrees of freedom). It then takes the pseudoinverse
of this matrix to map desired wrench to motor powers. How-
ever, this mapping may request motor powers which exceed
the maximum force output of the motor, or may request a

motor configuration which draws excessive current, possibly
degrading the electrical system of the vehicle. To combat
this, the controller dynamically and uniformly scales down
the requested input wrench until the computed motor powers
fall within predefined power and current limits. The controller
then uses a model to determine the input signal to be sent to
each motor to produce the desired force, which is a nonlinear
function. The relationship between motor input signal, motor
output power, and motor current draw (all with respect to sys-
tem voltage) was calculated by fitting cubic polynomials in the
thruster’s forward and reverse directions using data provided
by the supplier, BlueRobotics. The polynomial relating PWM
motor input and current is shown in Fig.

e fit
acutal

30
25
20

15

Jua.Lnd

10

20 1.0

18 0.8

2 0 14 06

) \a
"t296 12 0.2 04 pore?

10

Fig. 7. Computed motor fit curve relating input voltage, thruster mixing
output (i.e., PWM motor input), and current draw.

3) Orientation Sensing: To measure our orientation, we use
the InertialSense IK-1-IMX-5 IMU. This IMU was chosen for
its high measurement frequency (1 KHz), low rate gyroscopic
drift (claimed 0.16°/ \/ﬂ), and built in Altitude, Heading, and
Reference System (AHRS) which fuses measurements from
the gyroscope, accelerometer, pressure, and magnetometer
sensors into a single accurate orientation estimate. We use
the IMU to measure linear acceleration and angular velocity
along the X, y, and z axes. We also use the AHRS to provide
orientation information to our planning and control algorithms.

4) Computer Vision: In order to detect the pathmarker,
slalom, and bins, we utilize classical computer vision (CV)
techniques with the OpenCV library. The target objects are
single-colored with few features, making them highly no-
ticeable with HSV thresholding. The HSV (Hue, Saturation,
Value) color model simplifies the process of detecting these
objects, as it aligns closely with human perception of color and
allows for intuitive color-based segmentation [I]]. Additionally,
CV techniques are computationally cheaper compared to ML
models, making them more suitable for real-time applications.

Our HSV filter pipeline involves several steps to enhance
and process the underwater images to detect, e.g., the path

Michigan Robotic Submarine

marker, slalom, and bins. First, we adjust the white balance—
shifting and scaling the color channels—of the image to
counteract underwater distortion and make objects more dis-
tinguishable. Next, we perform histogram equalization on the
RGB channels of the image to enhance contrast, ensuring
that object details stand out more prominently (Fig. [8). The
enhanced image is then converted from the RGB color space
to the HSV color space. To reduce noise and smooth the
image, we apply median and Gaussian filters. Next, we apply
color thresholding to the HSV image to create a binary mask
that isolates the object’s colors, which highlights the object
against the background. The binary mask is further refined
using morphological operations such as erosion and dilation
to mitigate noise and fill gaps.

Fig. 8. Example of a pathmarker image before (left) and after (right) image
enhancement.

Using the binary mask, we detect contours in the image,
representing object boundaries. We analyze these contours
by their size and features uniqueness to identify the desired
objects. If a valid contour is found, we then process them based
on the specific tasks: either path marker, buoy, or bin. For
the path marker, we use the minimum area rectangle method
(bounding box) to approximate the path marker’s boundary.
We then identify the corners of this rectangle and calculate
the center points of the edges. The centers of the edges and
the center of the rectangle are calculated, and we use these
points to determine the yaw angle of the path marker relative
to the camera’s heading. By drawing lines between the corners
and calculating the angles, we can determine the orientation of
the path marker. This provided a significant improvement over
our previous pathmarker detection algorithms, which naively
searched for lines without considering the shape of the object.
For bin detection, the process is analogous to path marker
detection; Fig. [9] shows an example of detecting the key
features on the object. See Appendix A for full examples of
this pipeline operating on each object type.

One notable challenge we faced was the effects of our
camera’s automatic white-balance adjustments, which can in-
troduce variability in the color representation of objects and
thus affect the accuracy of HSV filtering under varying lighting
conditions. To mitigate this issue, we used manual white-
balance settings to maintain consistent color representation
and enhance our CV pipeline’s reliability. However, we were
only able to disable the automatic white-balance setting on

Fig. 9. Example of detecting key features on a bin-shaped object.

our downward-facing camera. Our forward-facing camera also
encountered an issue in which the brightest white-balance
setting introduced significant artifacts to the video stream. This
issue was only encountered in the bright outdoor competition
setting, so we employed the simple solution of blocking part of
the image with tape to prevent the camera from ever switching
to its brightest white-balance setting.

5) Machine Learning: To detect the images on the gate,
we continue to use the machine learning pipeline that we
developed in 2023. We use the YOLOVS5 neural network [2]] for
object detection, which we fine-tuned to detect gate images.
Our model runs within the PyTorch framework, an open source
machine learning framework that is an industry standard for
this type of work [3].

6) Task Planner: The task planner is the code for coordi-
nating system components to complete competition tasks. This
year we introduced several new features to our task planning
infrastructure to increase the iteration speed, catch additional
issues during development, and more efficiently utilize our
limited in-water testing time.

Our task planner follows a state machine framework, where
the AUV is in one state at a time. Each state defines the logic
commanding the motors given the current sensor inputs.

Our state machine defines the order of states and the
conditions to transition from one state to another. We use
several transition maps for various behavior routines, such
as the standard map for complete competition runs, the bin
map for testing approaching and completing the bin task, etc.
Appendix B includes an generated diagram of our current
competition state machine. We can use different maps at
testing time to isolate the relevant behaviors.

Because our state machine infrastructure is written in
Python, in previous years, issues regarding incorrect variable
names and object types were not encountered until we were
running the vehicle in the water. Such issues take up valuable
time that could be spent gathering data and validating our
vehicle. These issues can be mitigated with static analysis tools
such as mypy, a Python linter and type checker.

In the past few years, we have been significantly improving
our state machine framework to catch errors before water-test
time. This year, we reached the point where all of our planning
code can be checked with mypy. We now enforce this by
requiring all code changes to our development branch pass
the mypy type checker using GitHub Actions. The additional

Michigan Robotic Submarine

type safety also helps our development environment to provide
much more relevant auto-complete suggestions, increasing
developer productivity.

The state-transition-map system initially had a limitation:
parameters defined on states (such as target depth or timeout
period) could only be defined once among all transition maps,
so switching between the competition pool and the testing pool
(which may have different depths) required updating the code
to change the target depth. This year, we added a parameter-
overriding feature to override parameters for each transition
map, allowing us to switch between testing regimes much
faster. We also added the ability to start running the state
machine from any state, rather than just the predefined start
state, which helps to test the system faster.

III. TESTING AND EXPERIMENTAL RESULTS
A. Teleoperation Framework

A key takeaway from competing in-person has been the
need for an efficient water testing infrastructure. Due to
the interdependence of our subsystems, it is challenging to
test individual components of our system while the AUV is
operating autonomously; it is often difficult to diagnose the
source of errors when the entire system is running.

Last year, we developed a robust teleoperation (teleop)
framework that allows a human driver to manually control
various aspects of the AUV while other subsystems run au-
tonomously, enabling us to execute unit tests and debug com-
ponents in isolation. By writing our own teleop framework, we
are not limited to any specific hardware or software such as
ArduSub and are able to provide tighter integrations with our
other systems. We can use the controller to directly activate
and deactivate our state machine, alternate between controlling
certain axes of control directly or indirectly via controlling
target setpoints, and disable the motors immediately at the
lowest level of control when the emergency-stop button is
activated. This year, we continued to use this teleop framework
and found that it greatly simplified testing and iteration.

B. In-Water Testing

From past competitions we have learned that in-water test-
ing is invaluable and allows for both the software and hardware
teams to validate their designs. It is also a great opportunity
to train new members and boost morale. For these reasons,
our team has attempted to utilize our university’s resources to
perform as many water tests as possible.

This year, we performed our testing at the U-M Marine
Hydrodynamics Laboratory (MHL) towing tank. This tank is
large enough for us to calibrate sensors and motors, evaluate
our control and localization algorithms, and test our state
machine’s interactions with game elements.

Before each in-water testing session, we prioritized which
components we intended to test. Then after each session, we
reviewed what we tested and what the results were, as well as
any other issues/future improvements we found or thought of.

At a training session late this past fall, we encountered
an issue which damaged multiple components and required

a full tear-down/rebuild of our vehicle’s electrical system (see
[[-B2). We used this opportunity to train many new electrical
team members and make significant changes to our electrical
system. However, this also delayed when we could return to
testing our new system components to later in the year. Many
of our later test sessions were used to validate the new changes
and collect data for offline testing and improvements.

C. Off-Board Testing

To prevent us from wasting in-water testing time on simple
software errors, we developed a container image that emulates
our main computer to use with virtualization software like
Docker and Podman. This allows any team member to write,
execute, and test our software off the AUV on their laptop. In
general, we test the logic of our software within the container
and reserve in-water testing for collecting data to improve our
vision system or testing the physical results of our algorithms
once they had been tested in simulation.

To visualize the state of our vehicle, we created visual-
izations using RQt, a ROS dashboard library. We leveraged
RQt to graph data and dynamically tune control parameters,
allowing for easy incremental testing.

ACKNOWLEDGMENTS

The Michigan Robotic Submarine team would like to thank
our 2025 sponsors for their monetary support: Ford Motor
Company, University of Michigan Central Student Govern-
ment, University of Michigan Engineering Student Govern-
ment, the University of Michigan College of Engineering
along with the departments: Robotics, Computer Science and
Engineering, Electrical and Computer Engineering, and Me-
chanical Engineering. We’d also like to thank the individuals
who donated to our team during the University of Michigan’s
Giving Blue Day fundraiser.

In addition, we would like to thank our advisor Dr. Katie
Skinner for continuously supporting our team by advising us
and overseeing the Multidisciplinary Design Program which
allows members to earn class credit for their contributions to
our team.

We are greatly appreciative of the Marine Hydrodynamics
Lab staff, especially Jason Bundoff and Nicole Cheesman,
for graciously providing the team with an in-water testing
location.

We also would like to thank the Wilson Student Team
Project Center facilities and Ford Motor Company Robotics
Building staff, especially Alyssa Emigh and Chris Gordan, for
hosting our team workspace, providing tools and resources,
and supporting our endeavors.

We are also thankful of Mariah Moss and Katelyn Poore
from the Office of Student Affairs at the University of Michi-
gan College of Engineering for their guidance in developing
our team and assistance purchasing the materials that make
our work possible.

Lastly, we would like to thank the RoboNation team for
organizing the RoboSub competition. We are also thankful
for image data provided through the RoboNation data sharing
program.

Michigan Robotic Submarine

[1]

[2]

[3]

[4]

REFERENCES

N. Fragoulis and D. Kastaniotis, “Why Embedded Software Devel-
opment Still Matters: Optimizing a Computer Vision Application on
the ARM Cortex A8.” 2013, publisher: Irida Labs. [Online]. Available:
http://rgdoi.net/10.13140/2.1.2670.6240

G. Jocher, “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU
and OpenVINO Export and Inference”. Zenodo, Feb. 22, 2022. doi:
10.5281/zenodo.6222936.

P. Adam et al,, “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”, in Advances in Neural Information Processing
Systems 32, Curran Associates, Inc., 2019, pp. 8024-8035.

Inspiration Robotics, “RoboSub-Simulation”. Github.com.
https://github.com/InspirationRobotics/RoboSub-Simulation (accessed
June 11, 2022)

Michigan Robotic Submarine

APPENDIX A
COMPUTER VISION PIPELINE RESULTS

Input Enhanced Mask Detection

(Enhancement not needed)

Michigan Robotic Submarine

TimedOut

TimedOut

APPENDIX B
STATE MACHINE DIAGRAM

omplete

imedOut

ReachedAngleTimedOut

ApproachGate

SeenGatelmage
ApproachGateImage
oneThroughGate

imedOut

imedOut

AlignPathmarker

imedOut

ApproachBuoyOpen

SeenBuoy

CenterHeaveBuoy

Centered

[TimedOut

CenterYawBuoy

CloseToBuoy

CircumnavigateOpenDiscreteDiamondTurns

imedOut FinishedStep\FinishedStep

AlignPathmarkerToBins CircumnavigateOpenDiscreteMove

T'LmedOut

Reached

CenterCameraToBin

Reached
Reached
TimedOut
DroppedRight
imedOut

—— @.‘ Stutfaced

[TimedOut

Michigan Robotic Submarine

10

APPENDIX C

COMPONENT SPECIFICATIONS

Component Vendor Model/Type Specs Cost (if new) Year of Purchase
ASV Hull American Tooling & Custom 6061 Aluminum $3250.00 2022
Form/Platform Prototype
Waterproof Blue Robotics WetLink Penetrators WLP-M10-6.5MM- $120.00 2024
Connectors HC
Propulsion Blue Robotics T200 w/ Propellor 7-20V $1,074.00 2020
Power System N/A Custom N/A N/A N/A
Motor Controls Blue Robotics Basic ESC 7-26V $172.00 2023
CPU Nvidia Jetson Xavier NX 6-core Nvidia Carmel $400.00 2022

ARM v82 @ 1.9

GHz, 16 Gb RAM
Thruster Control Pololu Mini Maestro 12 12-Channel USB $37.95 2024
Board Servo Controller
Inertial Measurement Inertial Sense IK-1-IMX-5 Accel/Gyro: 10-DOF $350 2025
Unit (IMU) sensor
Doppler Velocity Log Cerulean Sonar Tracker 650 Uses 3 velocity $2,990 2024
(DVL) sensors. Maximum

depth rating: 300m
Camera(s) Stereolabs, Blue ZED2, Low-light HD stereo vision, $449.00, $99.00 2020, 2021

Robotics USB Camera pathmarker detection
Localization and N/A Custom N/A N/A N/A
Mapping
Vision N/A YOLOVS, PyTorch, train convolutional N/A 2023
OpenCV neural network and

perform classical

computer vision
Autonomy N/A Custom N/A N/A N/A
Open source software N/A Andy Ze ROS PID PID Control N/A N/A

10

	Competition Strategy
	Target Tasks

	Design Creativity
	Mechanical
	Hull
	Grabber
	Dropper

	Electrical
	Newly Created Sub-Team
	Fuses
	Hall Effect Sensors
	Motor Control Board
	Voltage Regulation

	Software
	Computing Architecture
	Flight Controller
	Orientation Sensing
	Computer Vision
	Machine Learning
	Task Planner

	Testing and Experimental Results
	Teleoperation Framework
	In-Water Testing
	Off-Board Testing

	References
	Appendix A: Computer Vision Pipeline Results
	Appendix B: State Machine Diagram
	Appendix C: Component Specifications

