Exploring Big Data

ENGAGE: Get the Picture?

Data...

• Which phone data plan do you prefer—1 gigabyte or 8 gigabytes?

Data in our Everyday World

Image with description	What is it? How do you know?

How do you know when you have enough data?"

Data...

- 1. What are data?
- 2. Why is the amount of data important?
- 3. Think of one or more everyday circumstances in which increasing amounts of data help you understand something better. Describe these circumstances.

How are the pixels in each photo data?

EXPLORE: The Big Deal about Big Data

Using Analogies

- What is an analogy?
- How can analogies help us understand something new?

any of a class of solids (as germanium) that have an ability to conduct electricity between that of a conductor and that of an insulator

dissolved oxygen

temperature

Caption:

Write a Caption

- Below your scatter plot, write a caption that includes
 - What I See: things you notice about the data on the scatter plot
 - What it Means: what you think the pattern (or not) in the data means.

Using Analogies

Analogy Map		
Photo	O ₂ vs temp scatter plot	How they are alike

Summarize our Learning

- How much data did they need to see a pattern or trend?
- Is there a certain point where more data don't really add to recognition?
- Scientific inquiry has a lot to do with thinking and learning. How do analogies help you conduct scientific inquiry?
- So what is "Big Data" anyway? How is it different than regular data sets?

EXPLAIN: Oyster Populations: A Case Study for Big Data

Data in our world

Can you think of an example of two things that might be related to one another in your life?

Example: How many text messages you send and your battery life on your smartphone.

The uses of Big Data

• Let's generate a list of ways in which Big Data might be helpful for scientists.

• How might scientists collect this kind of data?

Types of Scientific Questions

- What is the relationship between variables?
- For a given dependent variable, is there a difference between two groups?

Trends in Oyster Populations in Chesapeake Bay

Graph: US Fish and Wildlife Service; Data source: EPA Chesapeake Bay Program

Practice

- Look at Visualizing Trends and Differences
 - What do you think? Is there a trend or difference?
 - How do you you know?

Chesapeake Bay Water Quality

Part 1

 For each graph, (1) write on and next to the graph things you notice about the graph (What I see), then (2) below each graph describe what you think it means (What it means).

Graph 1: Salinity versus Conductivity

Conductivity measures how easily electricity flows through water. Typical values for conductivity are rain water: 2 to 100 μ S/cm, ground water: 50 to 50,000 μ S/cm, ocean: 50,000 μ S/cm, drainage from landfill: 10,000 μ S/cm.

Graph 2. Dissolved Oxygen and Conductivity

Graph 3. pH versus Conductivity

New York Lake Erie Ссорн Bath Binghamtor ★ Chesapeake Bay Scrantog Ohio Watershed Pennsylvania State College New Jersey Harrisburg Potomac River Maryland Watershed Baltmore Petersburg West Virginia Washington DC Delaware × Salisbury Virginia Richmond Atlantic Ocean Angie 1997 0 25 50 100 150 Kilometers

Geography of large watersheds draining into Chesapeake Bay

Interstate Commission on the Potomac River Basin

Salinity in River Outlets

Population Density of the Chesapeake Bay Watershed

Chesapeake Bay Water Quality

Part 2

For each histogram, (1) write on and next to the histogram things you notice (What I see), and then (2) below each histogram describe what you think it means (What it means).

1. Conductivity Levels in the Lower Chesapeake

2. Conductivity in the Potomac Watershed

3. Conductivity in the Upper Chesapeake Watershed

4. Conductivity in the Susquehanna Watershed

TASK: Developing an Argument

In teams...

- Develop explanations related to the decline of the oyster populations. You may argue for either A: Urbanization has caused oyster decline, or B: Urbanization has NOT caused oyster decline.
- Use the data sources and maps to fully develop their explanations of what they think is happening.
- In particular, pay close attention to the relationships between salinity and urban areas within the Bay.
- All team members must understand all aspects of the argument.
- Teams will each design and construct a visual aid. This visual aid will be used during the argument.
- Visual aid must be a map or graph with a summary or caption. The summary can be in either paragraph or bullet point format.
- Teams may search for appropriate "extra" information to bolster their argument.

Whole Class Debrief

As we look at the evidence for each argument, two team members will do the following:

- Team Spokesperson: Present the main points of the OPPOSITE argument.
- Team Recorder: Make a master list of bullets for EACH argument.

Summarize our Learning

- In general, what is the relationship between the number of data points and the ease of recognizing a trend or difference?
- In general, what is the relationship between how "spread out" data are and the ease of recognizing a trend or difference?
- Why would you choose one visualization (graph) over another?
- Why are these graphs helpful for people working with big data?
- How did using data and graphs help you to understand the oyster population decline in the Chesapeake Bay?

ELABORATE: Using Big Data to Answer Scientific Questions

Forming a Scientific Question

- Let's think
 - What kinds of scientific questions could we ask that would help us understand trends between two variables?
 - What kind of scientific questions could we ask that would help us understand differences in populations?

Now it's your turn

- With a partner, think about a scientific question you want to investigate in FieldScope.
 - Write your question down.
 - Decide which data (variables) you need to answer your questions.
 - Decide how you might visualize your data.
- Expectations:
 - A questions, with a graph, clearly labeled axis, and a caption below explaining observations in the data and what you think it means regarding your question.

Team Sharing

- Presenters: Share your question, your graph, and your interpretation with another team.
- Audience: Listen carefully and provide feedback and questions to the presenters.
- Be ready to share the OTHER team's presentation!

Whole Class

- Do all trend questions result in an obvious trend? Does an answer of "no" mean you have made a mistake?
- Do all difference questions result in an obvious difference? Does an answer of "no" mean you have made a mistake?
- What do you write for a claim when there is no obvious trend or difference? What does the evidence for each of these situations look like?

Summarize our Learning

- How did using crowdsourced data in FieldScope help you answer your question (or not)?
- Could you have answered it in a different way using other sources of evidence?